Skip Nav Destination
Close Modal
Search Results for
deep-penetration-mode welding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 304 Search Results for
deep-penetration-mode welding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006502
EISBN: 978-1-62708-207-5
... modes of laser welding: conduction-mode welding and deep-penetration mode welding. The article reviews the factors of process selection and procedure development for laser welding. The factors include power density, interaction time, laser beam power, laser beam diameter, laser beam spatial distribution...
Abstract
Most welding lasers fall into the category of fiber, disc, or direct diode, all of which can be delivered by fiber optic. This article provides a comparison of the energy consumptions and efficiencies of laser beam welding (LBW) with other major welding processes. It discusses the two modes of laser welding: conduction-mode welding and deep-penetration mode welding. The article reviews the factors of process selection and procedure development for laser welding. The factors include power density, interaction time, laser beam power, laser beam diameter, laser beam spatial distribution, absorptivity, traverse speed, laser welding efficiency, and plasma suppression and shielding gas. The article concludes with a discussion on laser cutting, laser roll welding, and hybrid laser welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001370
EISBN: 978-1-62708-173-3
.... It provides information on the applications of microwelding with pulsed solid-state lasers. The article describes the modes of laser welding such as conduction-mode welding and deep-penetration-mode welding, as well as major independent process variables for laser welding, such as laser-beam power, laser-beam...
Abstract
Laser-beam welding (LBW) uses a moving high-density coherent optical energy source, called laser, as the source of heat. This article discusses the advantages and limitations of LBW and tabulates energy consumption and efficiency of LBW relative to other selected welding processes. It provides information on the applications of microwelding with pulsed solid-state lasers. The article describes the modes of laser welding such as conduction-mode welding and deep-penetration-mode welding, as well as major independent process variables for laser welding, such as laser-beam power, laser-beam diameter, absorptivity, and traverse speed. It concludes with information on various hazards associated with LBW, including electrical hazards, eye hazards, and chemical hazards.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005615
EISBN: 978-1-62708-174-0
... welding. Advantages are described in terms of welding near heat sensitive components or materials and producing deep penetration or shallow welds with the same equipment. dissimilar metals electron beam welding electron beam welding machines joint design process control weld geometry...
Abstract
This article introduces the operating principles and modes of operation for high-vacuum (EBW-HV), Medium-vacuum (EBW-MV), and nonvacuum (EBW-NV) electron beam welding. Equipment, process sequence, part preparation, process control, and weld geometry are described for electron beam welding. Advantages are described in terms of welding near heat sensitive components or materials and producing deep penetration or shallow welds with the same equipment.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005641
EISBN: 978-1-62708-174-0
... P 0.7 Peak penetration ( A max ) occurs at very slow speeds, and the weld is wide with respect to the depth. In terms of weld width ( w ) and depth ( d ), both conduction-mode welding ( w/d ≥ 1) and deep-penetration welding ( w/d < 1) can be obtained with lasers. Laser Beam...
Abstract
This article provides an overview of the fundamentals, mechanisms, process physics, advantages, and limitations of laser beam welding. It describes the independent and dependent process variables in view of their role in procedure development and process selection. The article includes information on independent process variables such as incident laser beam power and diameter, laser beam spatial distribution, traverse speed, shielding gas, depth of focus and focal position, weld design, and gap size. Dependent variables, including depth of penetration, microstructure and mechanical properties of laser-welded joints, and weld pool geometry, are discussed. The article also reviews the various injuries and electrical and chemical hazards associated with laser beam welding.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005600
EISBN: 978-1-62708-174-0
... a keyhole in the metal, providing both deep penetration and high processing speeds. These two modes are described in the section “Modes of Operation” in this article. In addition, the major process variables for either mode of operation include three sets of welding parameters: the variables...
Abstract
Hybrid laser arc welding (HLAW) is a metal joining process that combines laser beam welding (LBW) and arc welding in the same weld pool. This article provides a discussion on the major process variables for two modes of operation of HLAW, namely, stabilization mode and penetration mode. The major process variables for either mode of operation include three sets of welding parameters: the variables for the independent LBW and gas metal arc welding processes and welding variables that are specific to the HLAW process. The article discusses the advantages, limitations, and applications of the HLAW and describes the major components and consumables used for HLAW. The components include the laser source, gas metal arc welding source, hybrid welding head, and motion system. The article also describes the typical sources of defects and safety concerns of HLAW.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001334
EISBN: 978-1-62708-173-3
... it for high-purity base metal. If the center of the weld becomes so hot that there is a region where the temperature coefficient of the surface tension is no longer positive, then the fluid flow pattern necessary for deep penetration is disrupted and the d/w ratio decreases. This effect is seen at high...
Abstract
High-velocity gas motion occurs in and around the arc during welding. This article describes the phenomena of gas flow in gas tungsten arc welding (GTAW) and gas metal arc welding (GMAW). The effect of trace element impurities on GTA weld penetration of selected alloys is presented in a table. The article concludes with a discussion on submerged arc welding (SAW).
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005579
EISBN: 978-1-62708-174-0
... tension is no longer positive, then the fluid flow pattern necessary for deep penetration is disrupted and the d/w ratio decreases. This effect is seen at high currents in Fig. 4 . Similar results have been obtained for other welding parameters. The surface temperature at which the change from positive...
Abstract
Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects in gas tungsten arc (GTA) welds. This article describes the surface-tension-driven fluid flow model and its experimental observations. The effects of mass transport on arc plasma and weld pool are discussed. The article reviews the strategies for controlling poor and variable penetration and describes the formation of keyhole and fluid flow in electron beam and laser welds. It also explains the fluid flow in gas metal arc welding and submerged arc welding, presenting its transport equations.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001445
EISBN: 978-1-62708-173-3
... for conduction-mode welding, due to their shorter wavelength (1.06 μm). For deep-penetration welding, the coupling advantage is not significant. Procedure Development The key factor for procedure development is the selection of optimum independent and dependent process variables. The independent process...
Abstract
Laser-beam welding (LBW) is a joining process that produces coalescence of material with the heat obtained from the application of a concentrated coherent light beam impinging upon the surface to be welded. This article describes the steps that must be considered when selecting the LBW process. It reviews the individual process variables that influence procedure development of the LBW process. Joint design and special practices related to LBW are discussed. The article concludes with a discussion on the use of consumables and special welding practices.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005621
EISBN: 978-1-62708-174-0
.... These transfer modes also produce high heat input, maximum penetration, and a high deposition rate. In welding steel, they are generally limited to welding that occurs in the flat position and the horizontal fillet position, except when pulsed current is used. Rotating transfer can be used in a deep groove...
Abstract
Heat and mass transfer in arc welding is normally studied from the standpoint of the weld pool and heat-affected zone. This article examines the heat and mass transfer from the arc to the base metal during the gas metal arc welding process. It also provides information on the selecting parameters for the development of welding procedures.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001335
EISBN: 978-1-62708-173-3
... produce high heat input, maximum penetration, and a high deposition rate. In welding steel, they are generally limited to welding that occurs in the flat position and the horizontal fillet position, except when pulsed current is used. Rotating transfer can be used in a deep groove in thick-section...
Abstract
This article provides information on heat and mass transfer from the arc to the base metal in the gas-metal arc welding (GMAW) process. It discusses the development of welding procedures and the general operation of the process. The issues described in this article include the: total heat transferred to the base metal; partitioning of heat transfer between the arc and the molten electrode droplets; transfer modes of the droplets; role of the arc in droplet transfer; and simple model for welding procedure development based on an understanding of heat and mass transfer to the base metal.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005572
EISBN: 978-1-62708-174-0
...” the arc below the base-metal surface, using high currents and relatively low voltages, as illustrated in Fig. 4 . In this case, the high arc force depresses the weld pool surface to create a cavity that contains the spatter. This condition results in deep weld penetration but can produce poor weld metal...
Abstract
This article discusses the operation principles, advantages, limitations, process parameters, consumables or electrodes, the equipment used, process variations, and safety considerations of gas metal arc welding (GMAW). It reviews the important variables of the GMAW process that affect weld penetration, bead shape, arc stability, productivity, and overall weld quality. These include welding consumables, equipment settings, and gun manipulation. The major components of a GMAW installation such as a welding gun, shielding gas supply, electrode feed unit, power source, and associated controls are discussed.
Book Chapter
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005597
EISBN: 978-1-62708-174-0
... metal arc welding Material Thickness Transfer mode Recommended shielding gas Advantages and limitations mm in. Carbon steel <2.0 <0.080 Short circuiting Ar-25CO 2 Good penetration and distortion control to reduce potential burnthrough Ar-15CO 2 Ar-8CO 2 2.0−3.2...
Abstract
The shielding gas used in an arc welding process has a significant influence on the overall performance of the welding system. These gases are argon, helium, oxygen, hydrogen, nitrogen, and carbon dioxide. This article discusses the shielding gas selection criteria for plasma arc welding, gas metal arc welding, and flux cored arc welding. It describes the basic properties of shielding gases, namely, dissociation, recombination, reactivity potential, oxidation potential, and gas purity. The article also provides information on the influence of the shielding gas on weld mechanical properties and self-shielded flux cored arc welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001340
EISBN: 978-1-62708-173-3
... >3.2 >0.125 Short circuiting Ar-15CO 2 Ar-25CO 2 CO 2 High welding speeds, good penetration and puddle control; applicable lot out-of-position welds Globular Ar-25CO 2 CO 2 Suitable for high-current and high-speed welding; deep penetration and fast travel speeds, but with greater...
Abstract
The shielding gas used in a welding process has a significant influence on the overall performance of the welding system. This article discusses the basic properties of a shielding gas in terms of ionization potential, thermal conductivity, dissociation and recombination, reactivity/oxidation potential, surface tension, gas purity, and gas density. It describes the characteristics of the components of a shielding gas blend. The article discusses the selection of shielding gas for gas-metal arc welding (GMAW), gas-tungsten arc welding (GTAW), and plasma arc welding (PAW), as well as the influence of shielding gas on weld mechanical properties. It concludes with a discussion on flux-cored arc welding.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001369
EISBN: 978-1-62708-173-3
... intensity generates temperatures of approximately 14,000 °C (25,000 °F) and is sufficient to vaporize almost any material, forming a vapor hole that penetrates deep into the workpiece. When this vapor hole is advanced along a weld joint, the weld is produced by three effects that occur simultaneously: (1...
Abstract
Electron-beam welding (EBW) is a high-energy density fusion process that is accomplished by bombarding the joint to be welded with an intense (strongly focused) beam of electrons that have been accelerated up to velocities 0.3 to 0.7 times the speed of light at 25 to 200 kV, respectively. This article discusses the principles of operation, as well as the advantages and limitations of EBW. It reviews the basic variables employed for controlling the results of an electron-beam weld. These include accelerating voltage, beam current, welding speed, focusing current, and standoff distance. The article reviews the operation sequence and safety aspects of EBW.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005627
EISBN: 978-1-62708-174-0
... mainly from the nuclear and aerospace industries, where 5 to 100 kW (7 to 130 hp) systems were developed for deep-penetration welding ( Ref 2 , 6 ). High-voltage systems, 150 to 200 kV, were developed to operate at less than 100 mA of beam current, while low-voltage systems, 30 to 60 kV, were developed...
Abstract
This article provides a history of electron and laser beam welding, discusses the properties of electrons and photons used for welding, and contrasts electron and laser beam welding. It presents a comparison of the electron and laser beam welding processes. The article also illustrates constant power density boundaries, showing the relationship between the focused beam diameter and the absorbed beam power for approximate regions of keyhole-mode welding, conduction-mode welding, cutting, and drilling.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002168
EISBN: 978-1-62708-188-7
... The high energy density achievable with lasers can produce a keyhole vapor cavity that allows for deep-penetration, high aspect ratio weld nuggets. Lasers can also be used in more conventional power density ranges that yield conduction welds of lower aspect ratio. Process Parameters Laser welds can...
Abstract
Laser beam machining removes, melts, or thermally modifies a material by focusing a coherent beam of monochromatic light on the workpiece. This article describes the principal lasers used in metal processing: neodymium-glass, carbon dioxide, and neodymium-doped yttrium aluminum garnet lasers. It discusses the operating parameters of concern in percussion drilling and trepanning. The process variables in surface treatment and laser cutting, as well as the operating parameters of concern in laser welding are reviewed. The article also explains the various categories of surface treatment: heat treating, cladding, surfacing, glazing, and marking.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001354
EISBN: 978-1-62708-173-3
... of a lack of fusion, insufficient penetration, and excessive reinforcement. This limits the use of this transfer mode to very few production applications. Carbon dioxide shielding produces a randomly directed globular transfer when the welding current and voltage values are significantly higher than...
Abstract
Gas-metal arc welding (GMAW) is an arc welding process that joins metals together by heating them with an electric arc that is established between a consumable electrode (wire) and a workpiece. This article discusses the advantages and limitations, operating principle, metal transfer mechanisms, and process variables of the GMAW process. The process variables include welding current, polarity, arc voltage, travel speed, electrode extension, electrode orientation, and electrode diameter. The major components of the basic equipment for a typical GMAW installation are discussed. The article also describes two consumable elements, such as electrode and shielding gas, of the GMAW process. It concludes with information on the safety aspects.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005566
EISBN: 978-1-62708-174-0
... Configurations The most common weld deposits made with SAW are groove, fillet, lap, plug, joggle, and surfacing (buildup) deposits. For groove or butt welds, the deep-penetration capability of SAW can play a role in specific joint selection. Plate up to 9.5 mm (0.38 in.) thick can be completely welded...
Abstract
Submerged arc welding (SAW) is suited for applications involving long, continuous welds. This article describes the operating principle, application, advantages, limitations, power source, equipment, and fluxes in SAW. It reviews three different types of electrodes manufactured for SAW: solid, cored, and strip. The article highlights the factors to be considered for controlling the welding process, including fit-up of work, travel speed, and flux depth. It also evaluates the defects that occur in SAW: lack of fusion, slag entrapment, solidification cracking, and hydrogen cracking. Finally, the article provides information on the safety measures to be followed in this process.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005552
EISBN: 978-1-62708-174-0
... molten weld pool (shown in profile as a section across a weld produced by a moving heat source) is also shown in Fig. 6 , as follows: Deep welds, with 70% of the heat of the arc found in the workpiece for the DCSP mode (left) In the DCRP mode (center), shallow welds and strong cleaning action...
Abstract
This article overviews the classification of welding processes and the key process embodiments for joining by various fusion welding processes: fusion welding with chemical sources for heating; fusion welding with electrical energy sources, such as arc welding or resistance welding; and fusion welding with directed energy sources, such as laser welding, electron beam welding. The article reviews the different types of nonfusion welding processes, regardless of the particular energy source, which is usually mechanical but can be chemical, and related subprocesses of brazing and soldering.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006515
EISBN: 978-1-62708-207-5
... mode provides cleaning, which is important for aluminum. The GTAW process permits excellent penetration control and can produce welds of excellent soundness. It is relatively slow but is highly maneuverable for welding tubing, piping, and variable shapes. Very precise welds in aluminum can be obtained...
1