Skip Nav Destination
Close Modal
Search Results for
deep drawing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 628
Search Results for deep drawing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005121
EISBN: 978-1-62708-186-3
... Abstract This article illustrates the mechanics of the deep drawing of a cylindrical cup. It discusses the fundamentals of drawing and drawability. Sheet metal is drawn in either hydraulic or mechanical presses. The article summarizes the defects in drawing and factors considered in press...
Abstract
This article illustrates the mechanics of the deep drawing of a cylindrical cup. It discusses the fundamentals of drawing and drawability. Sheet metal is drawn in either hydraulic or mechanical presses. The article summarizes the defects in drawing and factors considered in press selection for drawing. It explains the types of dies used for drawing sheet metal and the effects of process variables and material variables on deep drawing. The process variables that affect the success or failure of a deep-drawing operation include the punch and die radii, punch-to-die clearance, press speed, lubrication, and type of restraint of metal flow used. The article describes the process of redrawing and ironing of metals. Drawing of workpieces with flanges and drawing of hemispheres are also illustrated. The article also provides information on the reducing of drawn shells, methods for expanding portions of drawn workpieces, trimming, and deep drawing using fluid-forming presses.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005148
EISBN: 978-1-62708-186-3
... Abstract The selection of material for a drawing die is aimed at the production of the desired quality and quantity of parts with the least possible tooling cost per part. This article discusses the performance of a drawing die. It contains tables that list the lubricants used for deep drawing...
Abstract
The selection of material for a drawing die is aimed at the production of the desired quality and quantity of parts with the least possible tooling cost per part. This article discusses the performance of a drawing die. It contains tables that list the lubricants used for deep drawing, and the typical materials for punches and blank holders. The article describes the typical causes of wear (galling) of deep-drawing tooling. It analyzes the selection of a harder and more wear-resistant material, the application of a surface coating such as chromium plating to the finished tools, and surface treatments such as carburizing or carbonitriding for low-alloy steels or nitriding or physical vapor deposition coating for tool steels.
Image
Published: 01 December 1998
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Fig. 3 Percent reduction in deep-drawing versus diameter-to-thickness ( d / t ) ratio for deep drawing of cylindrical beryllium shells. Datapoints are experimental observations (double action or single action) used to derive the curve limits; d , blank diameter; t , blank thickness; shaded
More
Image
Published: 01 January 2006
Fig. 4 A double-action tool for deep drawing of beryllium that uses the action of the lower press action for blank restraint. Lubrication with this type of tooling is best achieved using asbestos paper impregnated with colloidal graphite (see inset). Source: Ref 2
More
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Fig. 16 Limiting draw ratio (LDR) as a function of die radius in deep drawing of brass cups. Also shown is the effect of punch radius on LDR; The optimum value of punch radius is 10 T . Reprinted with permission. Source: Ref 3
More
Image
Published: 01 January 2006
Fig. 18 Typical operation (deep drawing) performed in double-action hydraulic press, shown in three positions of stroke
More
Image
Published: 01 January 2006
Fig. 18 Flange insertion or draw-in sensor to measure draw-in in deep drawing tool. Source: Ref 2
More
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Image
Published: 01 January 2006
Fig. 28 Deep-drawing process using the fluid-forming press shown in Fig. 27 . (a) The blank is placed on the blankholder. (b) The outer ram moves upward, carrying the blank. (c) Oil is pumped into the inner ram system, pressing the punch upward. (d) Outer ram is returned to its initial
More
Image
Published: 01 January 2006
Fig. 14 Punch setup for deep drawing a superplastic sheet. (a) Plot showing thinning characteristics of a 59.9 mm (2.36 in.) diameter Zn-21Al-1Cu-0.1Mg heated sheet that was formed using the 160 mm (6.3 in.) diameter water-cooled punch setup illustrated in (b) and (c). N , blankholder load
More
Image
Published: 01 January 2006
Fig. 24 Schematic of ASEA Quintus deep-drawing press, a fluid forming press with a telescopic ram system
More
Image
Published: 01 January 2006
Fig. 58 Three types of failure in deep drawing. (a) Fracture over punch nose; punch nose radius is too sharp. (b) Chevron fracture in wall; die-profile radius is too sharp. (c) Vertical crack in thick-walled cups; die-profile radius may be too sharp, and blank edge may be poor.
More
Image
Published: 01 December 2004
Fig. 2 A cup showing ears formed during the deep-drawing process of aluminum. The rolling direction in the sheet is horizontal in the image.
More
1