Skip Nav Destination
Close Modal
By
Wayne Hung
By
Lawrence J. Rhoades, Hilary A. Clouser
Search Results for
deburring
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 100
Search Results for deburring
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Typical shapes of P/M parts that present deburring or cleaning difficulties...
Available to PurchasePublished: 01 January 1994
Fig. 1 Typical shapes of P/M parts that present deburring or cleaning difficulties
More
Image
Schematic of electrochemical machining: smoothing, deburring, and radiusing...
Available to PurchasePublished: 01 January 1994
Fig. 6 Schematic of electrochemical machining: smoothing, deburring, and radiusing of piston pin. Machining parameters: U (in Fig. 2 ) = 17 V; electrolyte pressure, 0.3 MPa; electrolyte, 15% NaCl; time of machining, 75 s; maximum current per piece, 180 A
More
Image
Tooling for electrochemical machining deburring. (a) Valve casing. (b) A fr...
Available to PurchasePublished: 01 January 1994
Fig. 7 Tooling for electrochemical machining deburring. (a) Valve casing. (b) A fragmentary schematic of the production jig. Machining parameters: 15% water solution of NaNO 3 ; U (in Fig. 2 ) = 15 V; machining time, 8 s; electrolyte pressure, 1 MPa; maximum current per piece, 20 A
More
Image
Published: 01 January 2003
Fig. 1 Electrochemical deburring at the intersection of two holes
More
Image
Published: 15 June 2020
Fig. 40 AM micropart (a) before and (b) after electrochemical deburring
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003597
EISBN: 978-1-62708-182-5
... Abstract Specific machining processes that employ electrochemical machining technology include deburring and deep-hole drilling. This article describes the principle and applications of electrochemical deburring as well as the machine tools used in the process. The system, process capabilities...
Abstract
Specific machining processes that employ electrochemical machining technology include deburring and deep-hole drilling. This article describes the principle and applications of electrochemical deburring as well as the machine tools used in the process. The system, process capabilities, and applications of electrochemical deep-hole drilling are also discussed. The article also reviews the pulse electrochemical machining.
Book Chapter
Post-Processing of Additively Manufactured Metal Parts
Available to PurchaseSeries: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006570
EISBN: 978-1-62708-290-7
... Abstract This article describes post-processing techniques for machining, finishing, heat treating, and deburring used to remove additive manufacturing (AM) metallic workpieces from a base plate and subsequent techniques to enhance printed workpieces. The AM processes include powder bed fusion...
Abstract
This article describes post-processing techniques for machining, finishing, heat treating, and deburring used to remove additive manufacturing (AM) metallic workpieces from a base plate and subsequent techniques to enhance printed workpieces. The AM processes include powder bed fusion, binder jetting, and direct energy deposition. The discussion provides information on powder removal, powder recycling and conditioning, part removal, and part enhancement. The mechanism, applications, advantages, and limitations of mechanical, radiation, and chemical-finishing processes as well as the properties of the resulting material are also covered.
Book Chapter
Blanking of Low-Carbon Steel
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005108
EISBN: 978-1-62708-186-3
... on the selection of material for dies and related components, as well as the selection of die type and design. The article illustrates the construction and use of short-run dies and conventional dies. It concludes with information on the shaving and deburring methods for blanking. accuracy blanked edges...
Abstract
This article discusses the production of blanks from low-carbon steel sheet and strip in dies in a mechanical or hydraulic press. It describes the cutting operations that are done by dies in presses to produce blanks. The applications of blanking methods are described with examples. The article reviews the characteristics of blanked edges and explains how to calculate the forces and the work involved in blanking. Factors affecting the processing of blanks are discussed. The article provides information on the selection of work metal form, the effect of work metal thickness on the selection of material for dies and related components, as well as the selection of die type and design. The article illustrates the construction and use of short-run dies and conventional dies. It concludes with information on the shaving and deburring methods for blanking.
Image
Published: 01 January 1989
Fig. 11 Aircraft valve bodies and spools deburred by abrasive flow machining
More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002169
EISBN: 978-1-62708-188-7
... Abstract This article discusses the principles of operation, capabilities, and limitations of the thermal energy method of deburring, with illustrations. deburring thermal energy method THE THERMAL ENERGY METHOD (TEM) of deburring was introduced in 1970 as a method of deburring...
Abstract
This article discusses the principles of operation, capabilities, and limitations of the thermal energy method of deburring, with illustrations.
Image
Schematic showing the flow pattern of media entering a passage, which gener...
Available to PurchasePublished: 01 January 1989
Fig. 3 Schematic showing the flow pattern of media entering a passage, which generates the machining action used for deburring and radiusing. When radiusing or deburring passage corners, a lower media viscosity is used, providing faster flow through the center of the passage than along its
More
Book Chapter
Abrasive Flow Machining
Available to PurchaseBook: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002157
EISBN: 978-1-62708-188-7
... the passage ( Fig. 2 ). Low flow rates are best for uniform material removal. For deburring or radiusing the edges of a passage, the higher flow rate of lower viscosity media within the passage causes the edges to be abraded more than the passage walls ( Fig. 3 ). The flow rate depends on the machine settings...
Abstract
Abrasive flow machining (AFM) finishes surfaces and edges by extruding viscous abrasive media through or across the workpiece. This article commences with a schematic illustration of the AFM process that uses two opposed cylinders to extrude semisolid abrasive media back and forth through the passages formed by the workpiece and tooling. It discusses the major elements of an AFM system, such as machine, tooling, and abrasive media. The article provides information on polishing, radiusing, edge finishing, and surface finishing capabilities of the AFM. It concludes with information on the various applications of the AFM process.
Image
Titanium microimplant (a) before and (b) after plasma electrolytic deburrin...
Available to PurchasePublished: 15 June 2020
Fig. 41 Titanium microimplant (a) before and (b) after plasma electrolytic deburring/polishing. Source: Ref 34
More
Image
Schematics of electrochemical machining (ECM) operations. (a) Die sinking. ...
Available to PurchasePublished: 01 January 1994
Fig. 1 Schematics of electrochemical machining (ECM) operations. (a) Die sinking. (b) Shaping of blades. (c) Drilling. (d) Milling. (e) Turning. (f) Wire ECM. (g) Drilling of curvilinear holes. (h) Deburring and radiusing. (i) Electropolishing
More
Book Chapter
Nontraditional Machining Processes
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003194
EISBN: 978-1-62708-199-3
.... Typical applications High strength, high hardness materials; high temperature alloy forgings; odd shaped holes and cavities; jet engine blade airfoils; small deep holes; jet engine blade cooling holes; deburring; face turning of disks; tungsten carbide machining; etching of numbers and letters in hard...
Abstract
This article is a comprehensive collection of summary charts that provide data and information that are helpful in considering and selecting applicable processes alternative to the conventional material-removal processes. Process summary charts are provided for electrochemical machining, electrical discharge machining, chemical machining, abrasive jet machining, laser beam machining, electron beam machining, ultrasonic impact grinding, hydrodynamic machining, thermochemical machining, abrasive flow machining, and electrical discharge wire cutting.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001306
EISBN: 978-1-62708-170-2
... (electrical steels). This article provides a detailed discussion on the various surface treatments, including cleaning, nitriding, carburizing, coating, and plating, performed on specialty steels. carburizing case hardening cleaning coating corrosion resistance deburring electrical steels ferrous...
Abstract
Specialty steels encompass a broad range of ferrous alloys noted for their special processing characteristics (powder metallurgy alloys), corrosion resistance (stainless steels), wear resistance and toughness (tool steels), high strength (maraging steels), or magnetic properties (electrical steels). This article provides a detailed discussion on the various surface treatments, including cleaning, nitriding, carburizing, coating, and plating, performed on specialty steels.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006517
EISBN: 978-1-62708-207-5
... with abrasive grain and are used for operations ranging from heavy grinding to light sanding: cutting off, sharpening, deburring, and finishing. Using the recommended speed for a wheel is important, not only from the standpoint of grinding results but also to ensure safety. Stress from centrifugal force...
Abstract
Mechanical finishes usually can be applied to aluminum using the same equipment used for other metals. This article describes the two types of grinding used in mechanical finishing: abrasive belt grinding and abrasive wheel grinding. It reviews the binders and fluid carriers used in buffing, and discusses satin finishing and barrel finishing. It also describes lapping and honing techniques that are of special interest in treating aluminum parts that have received hard anodic coatings. Honing recommendations for aluminum alloys are presented in a table.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001234
EISBN: 978-1-62708-170-2
... and scale, and modify the surface stress. The basic mass finishing processes include: Barrel finishing Vibratory finishing Centrifugal disc finishing Centrifugal barrel finishing Spindle finishing Drag finishing Mass finishing is a simple and low-cost means of deburring...
Abstract
Mass finishing normally involves loading components to be finished into a container together with abrasive media, water, and compound. This article focuses on basic mass finishing processes, including barrel finishing, vibratory finishing, centrifugal disc and barrel finishing, spindle finishing, and drag finishing. It describes the various factors considered in selecting the most suitable mass finishing process. The article also provides information on consumable materials, process considerations, safety precautions, and waste disposal of mass finishing processes.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002156
EISBN: 978-1-62708-188-7
... sections of glass, ceramics, or hardened metals Etching part numbers onto metal and plastic components ( Fig. 1 ) Deburring and deflashing metal and plastic parts Frosting glass Cutting intricate patterns in hard, brittle materials Cleaning oxides from metal surfaces Cleaning metallic...
Abstract
Abrasive jet machining (AJM) is a process that removes material from a workpiece through the use of abrasive particles entrained in a high-velocity gas stream. This article discusses the operation of principal components, advantages, and disadvantages of the AJM system. It describes several factors that determine the characteristics of the AJM process. These include flow rates of the jet stream, type and size of abrasive powders, and distance between the workpiece and nozzle.
1