Skip Nav Destination
Close Modal
Search Results for
dealuminification
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-14 of 14 Search Results for
dealuminification
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 January 2002
Fig. 43 Dealuminification of a cast aluminum bronze furnace electrode pressure ring exposed to recirculating cooling water (pH = 7.8 to 8.3, conductivity = 1000 to 1100 μS). The preferentially attacked γ phase left behind a residue of copper (darkened regions in eutectoid and along grain
More
Image
Published: 15 January 2021
Fig. 43 Dealuminification of a cast aluminum bronze furnace electrode pressure ring exposed to recirculating cooling water (pH = 7.8 to 8.3, conductivity = 1000 to 1100 μS). The preferentially attacked γ phase left behind a residue of copper (darkened regions in eutectoid and along grain
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003620
EISBN: 978-1-62708-182-5
... Abstract Dealloying is a corrosion process in which one or more elements are selectively dissolved, leaving behind a porous residue of the remaining elements. This article describes the dealloying in various systems, namely, dezincification, graphitic corrosion, dealuminification, and noble...
Abstract
Dealloying is a corrosion process in which one or more elements are selectively dissolved, leaving behind a porous residue of the remaining elements. This article describes the dealloying in various systems, namely, dezincification, graphitic corrosion, dealuminification, and noble metal alloys dealloying. The current-potential behavior of a binary alloy undergoing selective dissolution is reviewed. The article highlights the four mechanisms required for the formation of porous metals: ionization-redeposition, surface diffusion, volume diffusion, and percolation model of selective dissolution.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003548
EISBN: 978-1-62708-180-1
... corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching. corrosion crevice corrosion dealuminification...
Abstract
This article addresses the forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. It describes the mechanisms of corrosive attack for specific forms of corrosion such as galvanic corrosion, uniform corrosion, pitting and crevice corrosion, intergranular corrosion, and velocity-affected corrosion. The article contains a table that lists combinations of alloys and environments subjected to selective leaching and the elements removed by leaching.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004178
EISBN: 978-1-62708-184-9
... that of alloy 400; however, dealuminification can be a problem, particularly with alloys containing more than 8% Al ( Ref 4 ). Nonmetals Nonmetallic materials of construction have wide application in H 2 SO 4 . Most of these materials have good corrosion resistance to the pure acid, particularly...
Abstract
This article describes the selection of materials for the production and handling equipment of concentrated sulfuric acid, depending on factors such as the allowable corrosion rate, desired mechanical and physical properties, fabrication requirements, availability, and cost. Materials such as carbon steel, cast irons, austenitic stainless steels, higher austenitic stainless steels, higher chromium Fe-Ni-Mo alloys, nickel-base alloys, non-metals, and specific other metals and alloys are also discussed.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003772
EISBN: 978-1-62708-177-1
... and high-tensile brasses, rely on the development of proper microstructures for mechanical properties and optimal corrosion resistance. Failure analysis: Metallographic examination readily reveals stress-corrosion cracking, dezincification, dealuminification, and other common corrosion mechanisms...
Abstract
This article describes the microstructure of copper alloys, including copper-zinc (brasses), bronzes, copper-nickel, and copper-nickel-zinc, and examines the effect of oxygen content on alloy phases observed in different product forms. The article also discusses inclusions, etchants, and the effect of composition and processing on grain structure and growth rates.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004152
EISBN: 978-1-62708-184-9
... ). Dezincification may occur in brass tubes and tubesheets, denickelification in copper-nickel alloy tubes, dealuminification in aluminum bronze tubesheets, and graphitic corrosion in cast iron water boxes. Dealloying is rarely the cause of condenser tube failures, but when it does occur, it is generally found...
Abstract
This article addresses the major heat-transfer components of the water-steam loop of a power plant. It describes the various types of condensers, including water-cooled condensers and air-cooled condensers. The article explains the corrosion mechanisms encountered in the condensers, including erosion-corrosion, galvanic corrosion, and pitting corrosion. It discusses the types of deaerators and deals with their corrosion problems. The article provides a discussion on two types of feedwater heaters: channel feedwater heaters and header feedwater heaters. It summarizes the corrosion problems associated with common feedwater heater tube materials.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001069
EISBN: 978-1-62708-162-7
Abstract
This article is a compilation of property data for standard grades of cast copper alloys. Data are provided for mechanical, physical, thermal, electrical, chemical, nuclear, optical, and magnetic properties. The list for each alloy includes its common name, chemical composition, applications, mass characteristics, and fabrication characteristics.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004182
EISBN: 978-1-62708-184-9
... ) are prone to dealuminification and intergranular SCC in HF. Copper-zinc alloys have not been used for HF services. Copper-zinc and some other copper alloys are subject to embrittlement or are sensitive to velocity. Precious and Other Metals Silver (UNS P07020), gold (UNS P00020), platinum (UNS P04995...
Abstract
This article provides the corrosion data for materials in hydrofluoric acid (HF) and anhydrous hydrogen fluoride (AHF). These materials include carbon and low-alloy steels, austenitic stainless steels, nickel-rich austenitic stainless steels, nickel and nickel-base alloys, copper alloys, precious metals, and non-metals. The article also discusses the hydrogen blistering and stress-corrosion cracking of carbon steels in high-temperature HF and AHF.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002471
EISBN: 978-1-62708-194-8
Abstract
This article discusses the principles of corrosion and the basis of the various prevention measures that can be taken for different corrosion modes. It describes aqueous corrosion phenomena in terms of the electrochemical reactions that occur at the metal-environment interface. The article explains the specific forms of corrosion, including general corrosion, localized attack, and environmentally assisted cracking. It provides a discussion on the engineering aspects of design that can, without due care and attention, precipitate unexpected premature failure. The article reviews ways to improve corrosion awareness and prevent corrosion/degradation. It describes a life prediction method with an example of environmental degradation in light-water nuclear reactors. The article concludes with a discussion on the validation of life-prediction algorithms and their applications.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003131
EISBN: 978-1-62708-199-3
Abstract
Copper and copper alloys are widely used because of their excellent electrical and thermal conductivities, outstanding resistance to corrosion, and ease of fabrication, together with good strength and fatigue resistance. This article provides an overview of property and fabrication characteristics, markets, and applications of copper and its alloys. It contains several tables that provide helpful information on the chemical composition, classification, designation, uses, and mechanical properties of wrought copper and copper alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001065
EISBN: 978-1-62708-162-7
Abstract
Copper and copper alloys constitute one of the major groups of commercial metals due to their excellent electrical and thermal conductivities, corrosion and fatigue resistance, ease of fabrication, and good strength. This article lists the types, properties, fabrication characteristics, corrosion ratings, temper designations, and applications of wrought copper and copper alloys. It also presents an outline of the most commonly used mechanical working and heat treating processes. The copper industry in the United States is broadly composed of two segments: producers (mining, smelting, and refining companies) and fabricators (wire mills, brass mills, foundries, and powder plants). The article discusses copper production methods and describes major changes in the structure of the U.S. copper and copper alloys industry.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.9781627081627
EISBN: 978-1-62708-162-7