Skip Nav Destination
Close Modal
Search Results for
dark-field illumination
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 157 Search Results for
dark-field illumination
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 31 August 2017
Fig. 51 Same as in Fig. 50 but examined in dark-field illumination. M, martensite; EC, eutectic carbides; and SC, secondary carbides. Original magnification: 1000×
More
Image
Published: 31 August 2017
Fig. 54 Same as in Fig. 53 but examined in dark-field illumination. EC, eutectic carbides; SC, secondary carbides. Original magnification: 1000×
More
Image
Published: 01 December 2004
Fig. 15 Unprepared cross sections of structural foams. (a) Dark-field illumination, 10× objective. (b) Bright-field illumination, 65 mm (2.559 in.) macrophotograph
More
Image
Published: 01 December 2004
Fig. 47 Same as in Fig. 46 but examined in dark-field illumination. EC, eutectic carbides; SC, secondary carbides; and M, martensite. 1000×
More
Image
Published: 01 December 2004
Fig. 50 Same as in Fig. 49 but examined in dark-field illumination. EC, eutectic carbides; SC, secondary carbides. 1000×
More
Image
Published: 01 December 2004
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003754
EISBN: 978-1-62708-177-1
... discusses the examination of specimen surfaces using polarized light, phase contrast, oblique illumination, dark-field illumination, bright-field illumination, interference-contrast illumination, and phase contrast illumination. Special techniques and devices that may be used with the optical microscope...
Abstract
This article provides information on the basic components of a light microscope, including the illumination system, collector lens, and optical and mechanical components. It describes optical performance in terms of image aberrations, resolution, and depth of field. The article discusses the examination of specimen surfaces using polarized light, phase contrast, oblique illumination, dark-field illumination, bright-field illumination, interference-contrast illumination, and phase contrast illumination. Special techniques and devices that may be used with the optical microscope, to obtain additional information, are also described. The article concludes with information on photomicroscopy and macrophotography.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006684
EISBN: 978-1-62708-213-6
...-field illumination, dark-field illumination, polarized light illumination, or differential interference contract, generally by the Nomarski technique. This article concentrates on how to reveal microstructure properly to enable the proper identification of the phases and constituents and, if needed...
Abstract
The reflected light microscope is the most commonly used tool to study the microstructure of metals, composites, ceramics, minerals, and polymers. For the study of the microstructure of metals and alloys, light microscopy is employed in the reflected-light mode using either bright-field illumination, dark-field illumination, polarized light illumination, or differential interference contract, generally by the Nomarski technique. This article concentrates on how to reveal microstructure properly to enable the proper identification of the phases and constituents and, if needed, measuring the amount, size, and spacing of constituents, using the light optical microscope. The discussion covers the examination of microstructures using different illumination methods and includes a comparison between light optical images and scanning electron microscopy images of microstructure.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009075
EISBN: 978-1-62708-177-1
...-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The article also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical...
Abstract
The analysis of composite materials using optical microscopy is a process that can be made easy and efficient with only a few contrast methods and preparation techniques. This article is intended to provide information that will help an investigator select the appropriate microscopy technique for the specific analysis objectives with a given composite material. The article opens with a discussion of macrophotography and microscope alignment, and then goes on to describe various illumination techniques that are useful for specific analysis requirements. These techniques include bright-field illumination, dark-field illumination, polarized-light microscopy, interference and contrast microscopy, and fluorescence microscopy. The article also provides a discussion of sample preparation materials such as dyes, etchants, and stains for the analysis of composite materials using optical microscopy.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003464
EISBN: 978-1-62708-195-5
... grinding, and polishing. The preparation techniques of ultrathin sections are also summarized. The article explains the illumination methods used by reflected light microscopy to view a specimen. These consist of epi-bright-field illumination, epi-dark-field illumination, epi-polarized light, and epi...
Abstract
Microscopy is a valuable tool in materials investigations related to problem solving, failure analysis, advanced materials development, and quality control. This article describes the sample preparation techniques of composite materials. These techniques include mounting, rough grinding, and polishing. The preparation techniques of ultrathin sections are also summarized. The article explains the illumination methods used by reflected light microscopy to view a specimen. These consist of epi-bright-field illumination, epi-dark-field illumination, epi-polarized light, and epi-fluorescence. The article also provides information on transmitted light microscopy.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009079
EISBN: 978-1-62708-177-1
... Abstract This article describes the microcrack analysis of composite materials using bright-field illumination, polarized light, dyes, dark-field illumination, and epi-fluorescence. bright-field illumination composite materials dark-field illumination dyes epi-fluorescence microcrack...
Image
Published: 01 January 1987
Fig. 17 Comparison of bright-field (a), DIC (b), and dark-field (c), illumination for viewing a partially fractured (by impact) specimen of AISI type 312 weld metal containing substantial σ phase. All 240×
More
Image
Published: 01 December 2004
to the composite surface and wiped off with an acetone-dampened cloth. The dye wicked through the composite from the surface, leaving the dye in the microcracks. Dark-field illumination, 5× objective. (b) Top surface of the aramid fiber composite facesheet after failure. DYKEM Steel Red dye was applied
More
Image
Published: 01 December 2004
Fig. 21 Cu-11.8Al (aluminum bronze), heat treated, with martensite in the microstructure. (a) Bright-field illumination. (b) Dark-field illumination. (c) Differential interference-contrast illumination. (d) Crossed polarized light illumination. As-polished. 200×
More
Image
Published: 01 December 2004
Fig. 36 Solution-annealed and aged Waspaloy (UNS N07001). (a) Bright-field illumination. (b) Dark-field illumination. (c) Differential interference-contrast illumination. Glyceregia. 200×
More
Image
Published: 01 December 2004
Fig. 25 Lighting effects to enhance contrast between phase constituents in an unetched specimen of Al-Si-Cu-Ni alloy. (a) Bright-field illumination with silicon (A, dark gray), α-Al(FeMn)Si (B, light gray), and Al 2 Cu (C, beige). (b) Dark-field illumination with phase boundaries revealed. (c
More
Image
in Metallography and Microstructures of Low-Carbon and Coated Steels
> Metallography and Microstructures
Published: 01 December 2004
Fig. 56 Microstructure of a defect in an enamel coating on a low-carbon sheet. (a) Bright-field illumination. (b) Dark-field illumination. 2% nital etch. 100×
More
Image
Published: 01 December 2004
Fig. 19 Austenitic stainless steel (Fe-20Cr-33Ni-2.5Mo-3.5Cu and Nb + Ta), solution annealed. (a) Bright-field illumination. (b) Dark-field illumination. (c) Differential interference-contrast illumination. 15 mL HCl, 10 mL acetic acid, 10 mL HNO 3 , and 2 drops glycerol. 400×
More
Image
Published: 01 December 2004
Fig. 20 Cu-8.9P sand cast alloy showing the α + Cu 3 P eutectic. (a) Bright-field illumination. (b) Dark-field illumination. (c) Differential interference-contrast illumination. Swab etched using an aqueous solution of 3% (NH 4 ) 2 S 2 O 8 and 1% NH 4 OH. 1000×
More
Image
Published: 01 January 1987
Fig. 3 Comparison of light microscope (a and b) and SEM (c and d) fractographs of cleavage of faces in a coarse-grain Fe-2.5Si alloy broken at −195 °C (−320 °F). (a) Bright-field illumination. (b) Dark-field illumination. (c) Secondary electron image. (d) Everhart-Thornley backscattered
More
1