Skip Nav Destination
Close Modal
Search Results for
damage tolerant plate
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 800
Search Results for damage tolerant plate
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006617
EISBN: 978-1-62708-210-5
... Abstract Alloy 2624 was developed by Alcoa as a plate product to replace alloy 2024 and 2324 in applications requiring moderate or high strength and the highest levels of damage tolerance. This datasheet provides information on composition limits, processing effects on physical and mechanical...
Abstract
Alloy 2624 was developed by Alcoa as a plate product to replace alloy 2024 and 2324 in applications requiring moderate or high strength and the highest levels of damage tolerance. This datasheet provides information on composition limits, processing effects on physical and mechanical properties, and applications of this alloy. Figures provide comparisons of plane stress R-curves of 2624 with 2024-T351 and 2324-T39 and fatigue crack growth resistance of 2624 with 2024-T351 and 2324-T39.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006600
EISBN: 978-1-62708-210-5
... Abstract Alloy 2027 is an Al-Cu-Mg-Mn-Zr alloy providing improved mechanical properties compared with those of alloy 2024. Alloy 2027-T3511 extrusions are typically used for stringers to stiffen wing skin panels machined from damage tolerant 2xxx alloy plates. This datasheet provides...
Abstract
Alloy 2027 is an Al-Cu-Mg-Mn-Zr alloy providing improved mechanical properties compared with those of alloy 2024. Alloy 2027-T3511 extrusions are typically used for stringers to stiffen wing skin panels machined from damage tolerant 2xxx alloy plates. This datasheet provides information on key alloy metallurgy and processing effects on mechanical properties of plate and extrusions of this 2xxx series alloy.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006615
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on composition limits, processing effects on mechanical properties, and applications of alloy 2524. A comparison of strength minimums and typical damage tolerance properties for Alclad 2524-T3 with Alclad 2024-T3 plate is also provided. Alclad...
Abstract
This datasheet provides information on composition limits, processing effects on mechanical properties, and applications of alloy 2524. A comparison of strength minimums and typical damage tolerance properties for Alclad 2524-T3 with Alclad 2024-T3 plate is also provided.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001063
EISBN: 978-1-62708-162-7
... more damage tolerance, strength, and corrosion resistance than other aluminum-lithium alloys. While this grouping may not be complete, it does provide a starting guideline when considering potential applications for aluminum-lithium alloys, even though they are generally unsuitable for direct...
Abstract
Aluminum-lithium alloys have been developed primarily to reduce the weight of aircraft and aerospace structures. This article commences with a discussion on the physical metallurgy and development of aluminum-lithium alloys. It focuses on major commercial aluminum-lithium alloys, including alloy 2090, alloy 2091, alloy 8090, alloy CP276, and Weldalite 049. The article also lists the chemical compositions, physical properties, fabrication characteristics, corrosion performance, and general applications of these alloys. A comparison of alloy properties is represented graphically.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002392
EISBN: 978-1-62708-193-1
... approaches to corrosion identification and prevention. These include safe-life, fail-safe, and damage tolerance approaches. The article discusses their application to the process of extending the life of aircraft structural components. aircrafts corrosion damage tolerance fatigue life fracture...
Abstract
This article describes two analysis methods that are used to determine the life of aircrafts: fatigue life and fracture mechanics methods. The life limiting factors that control the durability of the aircraft are also discussed. The article provides an overview of the various approaches to corrosion identification and prevention. These include safe-life, fail-safe, and damage tolerance approaches. The article discusses their application to the process of extending the life of aircraft structural components.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002470
EISBN: 978-1-62708-194-8
... toughness and the design process. The article explores the use of plane strain fracture toughness ( K Ic ), crack-tip opening displacement, and the J -integral as criteria for the design and safe operation of structures and mechanical components. In particular, the use of fracture toughness in damage...
Abstract
Fracture toughness is the ability of a material to withstand fracture in the presence of cracks. This article focuses on the use of fracture toughness as a parameter for engineering and design purposes. Both linear elastic and elastic-plastic fracture mechanics concepts are reviewed as they relate to fracture toughness and design process. The article explores the use of plane strain fracture toughness, crack-tip opening displacement, and the J-integral as the criteria for the design and safe operation of structures and mechanical components. It discusses the variables affecting fracture toughness, including yield strength, loading rate, temperature, and material thickness. A summary of different fatigue and fracture mechanics design philosophies and their relationship with fracture toughness is provided. The article concludes with information on the examples of fracture toughness in design.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0009081
EISBN: 978-1-62708-177-1
... that impinges on the composite part. Material characteristics that affect the damage tolerance and mechanism of failure are the type of fiber, fiber tow structure, fiber volume, weave and stitching, matrix properties and toughness, location and size of the toughening materials, interlayer thickness...
Abstract
This article describes methods for analyzing impact-damaged composites in the aircraft industry. These include C-scan and x-radiography methods and optical microscopy. The article reviews brittle-matrix composite and tough-matrix composite failures. It explains the different types of composite failure mechanisms such as thermoplastic-matrix composite failure mechanisms, untoughened thermoset-matrix composite failure mechanisms, toughened thermoset-matrix composite failure mechanisms, dispersed-phase and rubber-toughened thermoset-matrix composite failure mechanisms, and particle interlayer-toughened composite failure mechanisms.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003516
EISBN: 978-1-62708-180-1
... Abstract This article discusses the fundamental variables involved in fatigue-life assessment, which describe the effects and interaction of material behavior, geometry, and stress history on the life of a component. It compares the safe-life approach with the damage-tolerance approach, which...
Abstract
This article discusses the fundamental variables involved in fatigue-life assessment, which describe the effects and interaction of material behavior, geometry, and stress history on the life of a component. It compares the safe-life approach with the damage-tolerance approach, which employs the stress-life method of fatigue life assessment. The article examines the behavior of three different metallic materials used in the design and manufacture of structural components: steel, aluminum, and titanium. It also reviews the effects of retardation and spectrum load on component life. The article concludes with case studies of fatigue life assessment from the aerospace industry.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002416
EISBN: 978-1-62708-193-1
... Abstract This article presents the damage tolerance criteria for military composite aircraft structures to safely operate the structures with initial defects or in-service damage. It describes the effects of defects, such as wrinkles in aircraft structures, and the reduction in compressive...
Abstract
This article presents the damage tolerance criteria for military composite aircraft structures to safely operate the structures with initial defects or in-service damage. It describes the effects of defects, such as wrinkles in aircraft structures, and the reduction in compressive strength and tensile strength. The article reviews low velocity impacts in aircraft structures in terms of resin toughness, laminate thickness, specimen size and impactor mass, and post-impact fatigue. It explains the tension strength analysis, such as linear elastic fracture mechanics and R-curve methods, to predict the residual strength of the structures.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003386
EISBN: 978-1-62708-195-5
... Abstract This article addresses the issue of the implementation of composite damage tolerance requirements as it relates to military aircraft. It presents a brief introduction on the durability impact threat, damage tolerance impact threat, and other damage tolerance damage threats. The article...
Abstract
This article addresses the issue of the implementation of composite damage tolerance requirements as it relates to military aircraft. It presents a brief introduction on the durability impact threat, damage tolerance impact threat, and other damage tolerance damage threats. The article summarizes damage tolerance criteria and durability criteria for military aircraft. It discusses the damage tolerance design philosophy for metallic structures and composite structures of the aircraft. The article describes the implementation of a damage tolerance analysis methodology in terms of the mechanics based model, the regression algorithm, and the semi-empirical analysis.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003706
EISBN: 978-1-62708-182-5
... Abstract This article discusses corrosion fatigue, its effects on the damage tolerance of aircraft, and its predictive modeling. A conceptual framework is presented that incorporates two distinctive cyclic-based life-prediction philosophies and expands them both to include the time domain...
Abstract
This article discusses corrosion fatigue, its effects on the damage tolerance of aircraft, and its predictive modeling. A conceptual framework is presented that incorporates two distinctive cyclic-based life-prediction philosophies and expands them both to include the time domain in order to consider the effects of corrosion. These philosophies include crack initiation used for safe-life design and crack growth used for damage tolerance. The article presents the methodology for computing the effects of real-time age degradation on an aircraft structure for two different corrosion types: crevice and pitting corrosion. It describes the rationale and techniques needed to apply the age-based structural integrity processes to in-service structures in order to realize the benefits throughout the full structural life cycle.
Book Chapter
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005126
EISBN: 978-1-62708-186-3
... the stock could climb or shift to one side without guides. The simplest form of entrance guide consists of a flat plate with a channel milled to the proper width and depth to accept the strip at its maximum tolerance, plus a simple, removable lid to hold the stock in place. The mounting for this guide...
Abstract
Contour roll forming is a continuous process for forming metal from sheet, strip, or coiled stock into desired shapes of uniform cross section by feeding the stock through a series of roll stations equipped with contoured rolls. This article discusses the materials, roll-forming machines, tooling, and auxiliary equipment used in contour roll forming and its process variables. Tooling used in roll forming includes forming rolls and dies for punching and cutting off the material. The article discusses the additional tooling required in tube mills to weld, size, and straighten the tubes as they are produced on the machine. It describes the roll design for tube rolling and reviews the seam welding operations of pipe and tubing. The article discusses cross-sectional tolerances, the reshaping of round tubing, and factors that affect the quality, accuracy, and surface finish.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002381
EISBN: 978-1-62708-193-1
... be equipped with so-called arrest strakes, which are located at the gunwale, at the bilge, and sometimes at mid-decks. They are longitudinal strakes of a higher-toughness material than the normal hull plating. The damage tolerance requirements for nuclear pressure vessels are contained in the ASME boiler...
Abstract
Fracture control is a systematic process to prevent fracture during operation that depends on the criticality of the component, the economic consequences of the structures being out of service, and the damage that would be caused by a fracture failure. This article describes the key principles of fracture control and reviews the concepts of damage tolerance analysis. It further presents practical guidelines to obtain useful and reasonable answers from damage tolerance analysis. The article concludes with information on fracture mechanics and fatigue design.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003426
EISBN: 978-1-62708-195-5
... in hand-drill operations is handling damage (chipped edges) to cutters. A sharp drill with a slow constant feed can produce a 0.1 mm (0.004 in.) tolerance hole through carbon/epoxy plus thin aluminum, especially if a drill guide is used. With hard tooling, tighter tolerances can be maintained. When...
Abstract
Good hole-drilling processes are key to joining composite parts with other composite parts or with metal parts. This article discusses the considerations for drilling polymer-matrix composites. It describes the use of power-feed drill motors and automated drilling/fastener installation equipment. The article provides a discussion on reaming, countersinking, and three recommended choices of cutting tools for producing a countersink in carbon/epoxy structure. The cutting tools include: standard carbide insert cutters, solid carbide cutters, or polycrystalline diamond (PCD) insert cutters. The article concludes with a discussion on inspection of hole quality.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002394
EISBN: 978-1-62708-193-1
... Abstract The inclusion of damage tolerance design and a systematic review of design procedures allow the U.S. Air Force to design, manufacture, and maintain systems that are structurally safe and economically prudent. After a brief introduction of fracture mechanics, this article describes...
Abstract
The inclusion of damage tolerance design and a systematic review of design procedures allow the U.S. Air Force to design, manufacture, and maintain systems that are structurally safe and economically prudent. After a brief introduction of fracture mechanics, this article describes the particular aspects that relate to damage tolerance in aircraft design. It discusses the use of fracture mechanics as a method of predicting failure, understanding failure mechanisms, and suggesting inspection methods to protect against failure in pressure vessels. Various programs of U.S. Air Force to design aircraft structure, namely, airframe structural integrity programs, engine structural integrity program, and mechanical subsystems structural integrity program are also discussed.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006711
EISBN: 978-1-62708-210-5
... resistance is superior to that of 2 xxx and 7 xxx high-strength alloys. Alloy 6013-T651 plate and extrusions have high resistance to corrosion, comparable to that of 6061-T651 plate. Fuselage Skin Sheet A high damage-tolerant (HDT) version of Alclad 6013 sheet was developed as a replacement...
Abstract
Alloy 6013 is a high-strength Al-Mg-Si-Cu alloy, developed for extruded automotive bumpers. This datasheet provides information on key alloy metallurgy, processing effects on physical, tensile, static and fracture properties, and fabrication characteristics of this 6xxx series alloy.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003515
EISBN: 978-1-62708-180-1
... Abstract This article provides information on life assessment strategies and conceptually illustrates the interplay of nondestructive evaluation (NDE) and fracture mechanics in the damage tolerant approach. It presents information on probability of detection (POD) and probability of false alarm...
Abstract
This article provides information on life assessment strategies and conceptually illustrates the interplay of nondestructive evaluation (NDE) and fracture mechanics in the damage tolerant approach. It presents information on probability of detection (POD) and probability of false alarm (PFA). The article describes the damage tolerance approach to life management of cyclic-limited engine components and lists the commonly used nondestructive evaluation methods. It concludes with an illustration on the role of NDE, as quantified by POD, in fully probabilistic life management.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006612
EISBN: 978-1-62708-210-5
.... Moderate strength level with high damage tolerance and corrosion characteristics make it very attractive for frames, spars, and bulkheads. It has been successfully used in applications requiring cyclic exposure to elevated temperature, around 110 °C (230 °F). Alloy 2297 plates also have been used...
Abstract
Alloys 2297 and 2397 were developed for thick plate integral structures. This datasheet provides information on composition limits of these 2xxx series alloys and processing effects on mechanical properties of alloy 2297-T87 plate. A figure provides a performance comparison of 2297-T87 and 2124-T851 plates.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002393
EISBN: 978-1-62708-193-1
.... The crack had originated at rivet holes of a reinforcing plate near the external rib of an engine, and it had propagated undetected because of the lack of adequate inspections based on engineering evaluation (i.e., damage tolerance). The aircraft had accumulated 25,760 h. Another important incident...
Abstract
Damage tolerance is a philosophy used for maintaining the structural safety of commercial transport aircrafts. This article describes the structural evaluations necessary to comply with the regulations contained in the Federal Air worthiness Requirements 25.571 whose guidance is given in Advisory Circular 25.571-1A from the Federal Aviation Administration. It provides an overview of the historical evolution of damage tolerance philosophy and presents a discussion of the design philosophies and a summary of the evaluation tasks for damage tolerance certification.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003139
EISBN: 978-1-62708-199-3
.... In some environments, a magnesium part can be severely damaged unless galvanic couples are avoided by proper design or surface protection. Therefore, this aspect is discussed in detail in the sub-section “Galvanic Corrosion” in this article. Standard reduction potentials Table 1 Standard...
Abstract
This article discusses the effects of heavy metal impurities, environmental factors, the surface condition (such as as-cast, treated, and painted), and the assembly practice on the corrosion resistance of a magnesium or a magnesium alloy part. It provides information on stress-corrosion cracking and galvanic corrosion of magnesium alloys, as well as the surface protection of magnesium assemblies achieved by inorganic surface treatments.
1