Skip Nav Destination
Close Modal
Search Results for
cyclic deformation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 576 Search Results for
cyclic deformation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Fracture and Fractography of Elastomeric Materials
> Characterization and Failure Analysis of Plastics
Published: 15 May 2022
Image
Published: 01 January 1996
Image
Published: 01 January 1996
Fig. 5 Schematic representation of cyclic deformation curves for tests where (a) Δσ/2 is constant and (b) Δε pl /2 is constant
More
Image
Published: 01 January 1996
Fig. 22 Cyclic deformation curve of polycrystalline copper (mean grain size 55 μm) in air and in vacuum. Source: Ref 106
More
Image
Published: 01 January 1996
Fig. 28 Cyclic deformation curves of a normalized steel containing 0.45% C at various stress amplitudes. Source: Ref 153
More
Image
Published: 01 January 1996
Fig. 30 Cyclic deformation curves of three conditions of an Al-Zn-Mg-0.5Cu alloy at various values Δε pl /2. Source: Ref 168
More
Image
Published: 01 January 1996
Fig. 31 Effect of cyclic deformation on Al-Zn-Mg-0.5Cu in the initially precipitate-free condition. (a) Before cyclic loading. (b) After cyclic loading at Δε pl /2 = 2 × 10 −4 . Source: Ref 168
More
Image
Published: 01 January 1996
Fig. 33 Cyclic deformation curves of polycrystalline Al-4Cu in different conditions. (a) θ″. (b) Fine θ′. (c) Coarse θ′. Source: Ref 176 , 177 , 178
More
Image
Published: 01 January 1996
Fig. 34 Cyclic deformation curve of α-brass at Δε pl = 5 × 10 −3 as a function of the degree of monotonic (tensile) predeformation. Source: Ref 209
More
Image
Published: 01 January 1996
Fig. 11 Dislocation arrangement in cyclically deformed fcc metals as a function of slip character and number of cycles to fracture. Source: Ref 27 , 28
More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006941
EISBN: 978-1-62708-395-9
... of a material. This includes assessing the extent of stress decay in materials that are pre-stressed, the noise and vibration transmission characteristics of a material, the amount of heat build-up in a material subjected to cyclic deformation, and the extent a material can recover from any prior deformation...
Abstract
This article describes the viscoelastic behavior of plastics in their solid state only, from the standpoint of the material deforming without fracturing. The consequences of viscoelasticity on the mechanical properties of plastics are described, especially in terms of time-dependencies, as well as the dependence of the viscoelastic character of a plastic on chemical, physical, and compositional variables. By examining the viscoelastic behavior of plastics, the information obtained are then applied in situations in which it may be important to anticipate the long-term properties of a material. This includes assessing the extent of stress decay in materials that are pre-stressed, the noise and vibration transmission characteristics of a material, the amount of heat build-up in a material subjected to cyclic deformation, and the extent a material can recover from any prior deformation. Several qualitative graphs are presented, which highlights the possible differences in the viscoelastic behavior that can exist among plastics.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002364
EISBN: 978-1-62708-193-1
... instabilities caused by cyclic deformations. It discusses the effect of mean stress on fatigue life and presents the analysis of cumulative fatigue damage. The article concludes with examples of application techniques for fatigue life prediction. cyclic deformation cyclic stress-strain curve fatigue...
Abstract
Fatigue crack initiation is an important aspect of materials performance in design. This article summarizes some fundamental concepts and procedures for the fatigue life prediction of relatively homogeneous, wrought metals when a major portion of total life is exhausted in crack initiation. It presents an overview of the strain-based, as opposed to stress-based, criterion of material behavior and fatigue analysis. The article describes the cyclic stress-strain behavior of metals to illustrate the inadequacy of the monotonic or tensile stress-strain curve in accounting for material instabilities caused by cyclic deformations. It discusses the effect of mean stress on fatigue life and presents the analysis of cumulative fatigue damage. The article concludes with examples of application techniques for fatigue life prediction.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002354
EISBN: 978-1-62708-193-1
... Abstract This article discusses the microstructural processes that take place during plastic deformation and presents a plain phenomenological and general description of the cyclic stress-strain (CSS) response. It emphasizes the microstructural aspects of cyclic loading on single-phase...
Abstract
This article discusses the microstructural processes that take place during plastic deformation and presents a plain phenomenological and general description of the cyclic stress-strain (CSS) response. It emphasizes the microstructural aspects of cyclic loading on single-phase materials tested in initially soft, dislocation-poor conditions resulting from a prior heat treatment. The article discusses deformation-induced phase transformations in austenitic stainless steels and commercial age-hardened aluminum alloys. It describes the interaction of dislocations and the strengthening of second-phase particles. The article also provides a description of the framework used to model the CSS response on a physical basis.
Image
Published: 01 June 2012
Fig. 20 Effects of mean strain and strain amplitude on the cycles to fracture for Nitinol stent subcomponents. The test specimen and affixed grip fixture are shown in the inset, along with arrows to illustrate the direction of cyclic deformation. Testing was conducted at 37 °C (99 °F) at 25 Hz
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002396
EISBN: 978-1-62708-193-1
.... The traditional approach to fatigue design with ferrous alloys, based on endurance limits and infinite life criterion, has been supplanted by approaches based on finite-life behavior that emphasize the cyclic deformation aspects of the fatigue process ( Ref 4 , 5 ). Central to these approaches for predicting...
Abstract
This article reviews general trends in the cyclic response for representative commercial alloys to establish the spectrum of cyclic properties attainable through microstructural alteration. Individual alloy classes are examined in detail to assess the understanding of relationships between microstructure and fatigue resistance. These alloys classes include ferritic-pearlitic alloys, martensitic alloys, maraging steels, and metastable austenitic alloys. The article also discusses the role of internal defects and selective surface processing in influencing fatigue performance.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002353
EISBN: 978-1-62708-193-1
... Abstract Fatigue damage in metals is caused by the simultaneous action of cyclic stress, tensile stress, and plastic strain. This article details the fundamental aspects of the stages of the fatigue failure process. These include cyclic plastic deformation prior to fatigue crack initiation...
Abstract
Fatigue damage in metals is caused by the simultaneous action of cyclic stress, tensile stress, and plastic strain. This article details the fundamental aspects of the stages of the fatigue failure process. These include cyclic plastic deformation prior to fatigue crack initiation, initiation of one or more microcracks, propagation or coalescence of microcracks to form one or more microcracks, and propagation of one or more macrocracks.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006870
EISBN: 978-1-62708-395-9
... application that involved high-frequency cyclic deformation in compression mode. Figures 2 and 3 display beach marks that radiate outward from a central point, which is the origin of the defect. Beach marks are the circular or elliptical lines oriented perpendicular to the direction of crack propagation...
Abstract
This article examines the concept of fractography as applied to elastomeric rubbery materials. It considers four general categories of physical root failure causes: design defects, material defects, manufacturing defects, and service life anomalies. Examples of real-world failures of rubber articles, with numerous accompanying figures, are representative of the four root failure categories.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003570
EISBN: 978-1-62708-180-1
.... Woodford D.A. , Cavitation-Erosion-Induced Phase Transformation in Alloys , Metall. Trans. , Vol 3 , 1972 , p 1137 – 1145 16. Richman R.H. , McNaughton W.P. , and Rao A.S. , Cyclic Deformation and Phase Transformation in Cavitation Erosion of Alloys , Int. Conf...
Abstract
Erosion of solid surfaces can be brought about solely by liquids in two ways: from damage induced by formation and subsequent collapse of voids or cavities within the liquid, and from high-velocity impacts between a solid surface and liquid droplets. The former process is called cavitation erosion and the latter is liquid-droplet erosion. This article emphasizes on manifestations of damage and ways to minimize or repair these types of liquid impact damage, with illustrations.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005658
EISBN: 978-1-62708-198-6
.... 16 ). The data in Fig. 15 , obtained by applying a cyclic load, are rather unremarkable when compared to other metals. However, Fig. 16 shows that imposing cyclic strains rather than stresses delivers a truly remarkable performance when compared to other metals. Cyclic deformations of up to 10...
Abstract
This article focuses on the specific aspects of nitinol that are of interest to medical device designers. It describes the physical metallurgy, physical properties, and tensile properties of the nitinol. The article discusses the factors influencing superelastic shape memory effects, fatigue, and corrosion in medical device design. It reviews the biocompatibility of nitinol based on corrosion behavior. The article explains the general principles, potential pitfalls, and key properties for manufacturing, heat treatment, and processing of nitinol.
Book Chapter
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002417
EISBN: 978-1-62708-193-1
... in the description of cyclic failure. In the metallurgy, polymer science, and mechanical engineering communities, the word fatigue is a well-accepted term for describing the deformation and failure of materials under cyclic loading conditions. However, in the ceramics literature, the expression static fatigue...
Abstract
This article summarizes the understanding of the mechanisms and mechanical effects of fatigue processes in highly brittle materials, with particular emphasis on ceramics. It provides a discussion on room-temperature fatigue crack growth in monolithic ceramics, transformation-toughened ceramics, and ceramic composites under cyclic compression. The cyclic damage zones ahead of tensile fatigue cracks, crack propagation under cyclic tension or tension-compression loads, and elevated-temperature fatigue crack growth in monotonic and composite ceramics, are discussed. The article presents ceramic fatigue data for fatigue crack growth testing and concludes with a discussion on life prediction for ceramics or ceramic-matrix composites.
1