1-20 of 100

Search Results for cyanide zinc baths

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Book Chapter

By A. Sato
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001248
EISBN: 978-1-62708-170-2
... Abstract Commercial zinc plating is accomplished by a number of distinctively different systems: cyanide baths, alkaline noncyanide baths, and acid chloride baths. This article focuses on the composition, advantages, disadvantages, operating parameters, and applications of each of the baths...
Image
Published: 01 January 1994
Fig. 6 Variation in thickness of zinc plate obtained in automatic plating in cyanide zinc bath, 75 tests More
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003215
EISBN: 978-1-62708-199-3
... for coating iron and steel parts when protection from either atmospheric or indoor corrosion is the primary objective. Plating Baths Commercial zinc plating is accomplished by a number of distinctively different systems: cyanide baths, alkaline noncyanide baths, and acid chloride baths. In the 1970s...
Book Chapter

By L.M. Weisenberger, B.J. Durkin
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001242
EISBN: 978-1-62708-170-2
... baths are fine-grain and semibright. For pyrophosphate plating on steel, zinc die castings, magnesium, or aluminum, a preliminary strike should be used. For striking, a dilute cyanide or pyrophosphate copper, nickel, or other solution may be used. Acid Plating Baths Electrodeposition of copper...
Book Chapter

By Milton F. Stevenson, Sr.
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001247
EISBN: 978-1-62708-170-2
... solution clean-up, including removal of excess sodium carbonate, purification with zinc dust, treatment with activated carbon, and filtration. Formation and Elimination of Carbonate Sodium carbonate forms in the cyanide bath as a result of the decomposition of sodium cyanide and the reaction...
Book Chapter

By Jude Mary Runge, Christoph Werner, S. Lampman
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006491
EISBN: 978-1-62708-207-5
... salts 60 g per liter, and free sodium cyanide (max) 5.6 g per liter. A current density of 25 mA/cm 2 (24 A/ft 2 ) insures rapid coverage of the zinc film with copper. After 2 min at the initial level, density may be reduced to 13 mA/cm 2 (12 A/ft 2 ) and plating continued for an additional 3 to 5 min...
Book Chapter

By Henry Strow
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001255
EISBN: 978-1-62708-170-2
... was cyanide based with a relatively high hydroxide content. Brass Plating Decorative Applications The largest use of brass plating is for decorative applications. Copper-zinc alloys that contain more than 60% Cu have distinct colors, depending on the composition. The 60Cu-40Zn alloys are pale yellow...
Book Chapter

By Daryl D. Peter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001388
EISBN: 978-1-62708-173-3
..., such as borax and cryolite, are added to neutral chloride salts to produce a fluxing environment in the bath. When these fluxing agents are used with silver alloy or copper-zinc filler metals, periodic flux additions are required to maintain the fluxing potential of the bath. Above 650 °C (1200 °F), the fluxing...
Book Chapter

By Allen W. Grobin, Jr.
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001249
EISBN: 978-1-62708-170-2
... overcome by adding gelatin or glue to the bath to increase its viscosity. Plating Baths The four most commonly used indium plating baths are indium cyanide, indium fluoborate, indium sulfamate, and indium sulfate. Table 1 compares these processes. The details of the processes are shown in Tables...
Image
Published: 01 January 1994
Fig. 3 Effects of bath composition variables and cathode current density on cathode efficiency in cyanide zinc plating. (a) Effect of NaCN/Zn ratio. 60 g/L (8 oz/gal) Zn (CN); 17.5 to 43.7 g/L (2.33 to 5.82 oz/gal) NaCN; 75.2 g/L (10 oz/gal) NaOH; 2.0-to-1 to 2.75-to-1 ratios of NaCN to zinc More
Book Chapter

By Reginald K. Asher, Sr.
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001256
EISBN: 978-1-62708-170-2
...-15Zn have been used. Electrolytes are made from a mixture of potassium stannate, zinc cyanide, potassium cyanide, and potassium hydroxide. The amount of potassium cyanide determined by analysis is higher than that added to the bath initially, because the analysis also detects the cyanide in zinc...
Book Chapter

By Nabil Zaki
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001257
EISBN: 978-1-62708-170-2
... 70 to 90% Sn and 10 to 30% Zn. Cyanide, acid, and neutral commercial baths are available. Tin-zinc baths are expensive to operate because they require the use of special cast tin-zinc anodes. Tin-zinc alloys exhibit excellent solderability, ductility, and corrosion resistance. Chromate...
Book Chapter

Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001308
EISBN: 978-1-62708-170-2
... surface with, or dip a test panel into, an unheated chromate conversion coating bath of the acid type until an orange-colored film is formed. A uniform orange film indicates a chemically clean surface. Solvent Cleaning The primary function of solvent cleaners is to remove oil and grease compounds...
Book Chapter

By B. Mishra
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004218
EISBN: 978-1-62708-184-9
... 0.05 0.3 90 5.2×10 −3 Zinc (cyanide) plating bath Zinc 35 0.054 0.35 70 1.1×10 −2 Cyanide (CN) 100 0.054 0.35 70 3.1×10 −2 Zinc (chloride) plating bath Zinc 40 0.043 0.28 95 7.4×10 −3 Zinc (alkaline noncyanide) plating bath Zinc 15 0.023 0.15 75 1.9×10 −3...
Book Chapter

Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001274
EISBN: 978-1-62708-170-2
... because all phosphating baths contain depolarizers or oxidizers that react with the hydrogen as it is formed and render it harmless to the metal. In some instances, however, zinc-phosphate processes, intended for use with rust-inhibiting oils for corrosion resistance or manganese-phosphate treatments, can...
Book Chapter

Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006335
EISBN: 978-1-62708-179-5
... and reduction of fatigue strength are not dissipated as heat treating temperature approaches stress-relieving temperature. Nonmechanical Cleaning Nonmechanical cleaning methods applicable to cast irons include molten salt bath cleaning, pickling, and chemical cleaning, with the latter method including...
Book Chapter

By Kenneth B. Tator
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006027
EISBN: 978-1-62708-172-6
... the workpiece in a bath or by spraying in a cabinet or tunnel. For painting purposes, crystalline zinc phosphate layers are formed on steel, zinc galvanized steel, and aluminum. The weight of the phosphate coating ranges from 1 to 7 g/m 2 (0.0033 to 0.023 oz/ft 2 ). The phosphate solution consists...
Book Chapter

By J.R. Davis
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001303
EISBN: 978-1-62708-170-2
... should be avoided. The corrosion performance of both cadmium and zinc is greatly enhanced by chromate conversion coatings. Most cadmium plating is carried out in alkaline cyanide baths prepared by dissolving cadmium oxide (CdO) in a sodium cyanide (NaCN) solution. Sodium hydroxide (NaOH) and sodium...
Book Chapter

Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001309
EISBN: 978-1-62708-170-2
... are used for pipes, valves, and fittings in systems carrying potable water, process water, or other aqueous fluids. The elements most commonly alloyed with copper are aluminum, nickel, silicon, tin, and zinc. Other elements and metals are alloyed in small quantities to improve certain material...
Book Chapter

By J.R. Davis
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001304
EISBN: 978-1-62708-170-2
..., hot-dip coating processes, electrogalvanizing, electroplating, metal cladding, organic coatings, zinc-rich coatings, porcelain enameling, thermal spraying, hardfacing, vapor-deposited coatings, surface modification, and surface hardening via heat treatment. alloy steel cadmium plating carbon...