Skip Nav Destination
Close Modal
Search Results for
cutting tools
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 400 Search Results for
cutting tools
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003838
EISBN: 978-1-62708-183-2
... improve the properties of tungsten carbide cutting tools. The article also details the coating materials and coating processes of cemented carbides. abrasion resistance cemented carbides corrosion corrosion resistance cutting tools tungsten carbide wear resistance CEMENTED CARBIDES consist...
Abstract
Cemented carbides are extremely important in corrosion conditions in which high hardness, wear resistance, or abrasion resistance is required. This article describes the effect of binder composition and carbide addition on corrosion behavior of cemented carbides. It lists the examples of their uses in corrosion applications. The article provides information on the selection of cemented carbides for corrosion applications and tabulates the corrosion resistance of cemented carbides in various media. It expounds the oxidation resistance of cemented carbides and presents some tips to improve the properties of tungsten carbide cutting tools. The article also details the coating materials and coating processes of cemented carbides.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003188
EISBN: 978-1-62708-199-3
... Abstract Selecting the proper cutting tool material for a specific machining application can provide substantial advantages, including increased productivity, improved quality, and reduced costs. This article begins with a description of the factors affecting the selection of a cutting tool...
Abstract
Selecting the proper cutting tool material for a specific machining application can provide substantial advantages, including increased productivity, improved quality, and reduced costs. This article begins with a description of the factors affecting the selection of a cutting tool material. This is followed by a schematic representation of their relative application ranges in terms of machining speeds and feed rates. The article provides a detailed account of chemical compositions of various tool materials, including high-speed tool steels, cobalt-base alloys, cemented carbides, cermets, ceramics, cubic boron nitride, and polycrystalline diamond. It compares the toughness, and wear resistance for these cutting tool materials. Finally, the article explains the steps for selecting tool material grades for specific application.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001320
EISBN: 978-1-62708-170-2
... productivity of carbide, cermet, and ceramic cutting tool materials used in machining operations. The useful life of cutting tools may be limited by a variety of wear processes, such as crater wear, flank wear or abrasive wear, builtup edge, depth-of-cut notching, and thermal cracks. The article provides...
Abstract
The classes of tool materials for machining operations are high-speed tool steels, carbides, cermets, ceramics, polycrystalline cubic boron nitrides, and polycrystalline diamonds. This article discusses the expanding role of surface engineering in increasing the manufacturing productivity of carbide, cermet, and ceramic cutting tool materials used in machining operations. The useful life of cutting tools may be limited by a variety of wear processes, such as crater wear, flank wear or abrasive wear, builtup edge, depth-of-cut notching, and thermal cracks. The article provides information on the applicable methods for surface engineering of cutting tools, namely, chemical vapor deposited (CVD) coatings, physical vapor deposited coatings, plasma-assisted CVD coatings, diamond coatings, and ion implantation.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003192
EISBN: 978-1-62708-199-3
... recommendations for the range of speeds and feeds for various machining operations, parameters for the selection of tool geometry, and guidelines on the selection and identification of cutting fluids. cutting fluid recommendations cutting speed recommendations drilling end milling face milling...
Abstract
This article is a comprehensive collection of machining data, presented in tables, covering most of the commonly used machining operations including turning, face milling, end milling (peripheral), drilling, reaming, and tapping of several materials. It provides starting recommendations for the range of speeds and feeds for various machining operations, parameters for the selection of tool geometry, and guidelines on the selection and identification of cutting fluids.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001231
EISBN: 978-1-62708-170-2
.... broaching cubic boron nitride tool cutting edges drilling finishing milling polycrystalline diamond tool precision finish machining reaming turning ultraprecision finish machining THIS ARTICLE covers precision and ultraprecision finish machining techniques that make use of defined cutting...
Book
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.9781627081887
EISBN: 978-1-62708-188-7
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003187
EISBN: 978-1-62708-199-3
... Abstract Fundamental to the machining process, is the metal-cutting operation, which involves extensive plastic deformation of the work piece ahead of the tool tip, high temperatures, and severe frictional conditions at the interfaces of the tool, chip, and work piece. This article explains...
Abstract
Fundamental to the machining process, is the metal-cutting operation, which involves extensive plastic deformation of the work piece ahead of the tool tip, high temperatures, and severe frictional conditions at the interfaces of the tool, chip, and work piece. This article explains that the basic mechanism of chip formation is shear deformation, which is controlled by work material properties such as yield strength, shear strength, friction behavior, hardness, and ductility. It describes various chip types, as well as the cutting parameters that influence chip formation. It also demonstrates how the service life of cutting tools is determined by a number of wear processes, including tool wear, machining parameters, and tool force and power requirements. It concludes by presenting a comprehensive collection of formulas for turning, milling, drilling, and broaching, and its average unit power requirement.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003042
EISBN: 978-1-62708-200-6
... such as delamination and fiber or resin pullout. The article describes machining and drilling techniques and the necessary tools and cutting parameters. It presents a description of laser cutting. The article also provides information on the advantages, disadvantages, cutting characteristics, and...
Abstract
This article describes the use of conventional machining techniques, laser cutting and water-jet cutting for producing finished composite parts. It explains two representative polymer-matrix composites--graphite and aramid composites--and discusses the machining and drilling problems such as delamination and fiber or resin pullout. The article describes machining and drilling techniques and the necessary tools and cutting parameters. It presents a description of laser cutting. The article also provides information on the advantages, disadvantages, cutting characteristics, and applications of water-jet cutting and abrasive water-jet cutting.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001232
EISBN: 978-1-62708-170-2
... finishing abrasive jet machining abrasive materials buffing finishing fixed-abrasive finishing grinding high-precision finishing honing lapping machine tool machining microgrinding multipoint cutting edges operational factors polishing random cutting edges ultrasonic machining wheel...
Abstract
Abrasive finishing is a method where a large number of multipoint or random cutting edges are coupled with abrasive grains as a bond or matrix material for effective removal of material at smaller chip sizes. This article provides a broad overview of the various categories of abrasive products and materials, abrasive finishing processes, and the mechanisms of delivering the abrasives to the grinding or machining zone. Abrasive finishing processes, such as grinding, honing, superfinishing, microgrinding, polishing, buffing, and lapping, are discussed. The article presents a brief discussion on abrasive jet machining and ultrasonic machining. It concludes with a discussion on the four categories of factors that affect the abrasive finishing or machining: machine tool, work material, wheel selection, and operational.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003189
EISBN: 978-1-62708-199-3
.... Effective application of cutting fluids can also lengthen tool life, decrease surface roughness, increase dimensional accuracy, and decrease the amount of power that is consumed when cutting dry. Knowledge of cutting fluid functions, types, physical limitations, and compositions plays an important role in...
Abstract
Cutting fluids play a major role in increasing productivity and reducing costs by making possible the use of higher cutting speeds, higher feed rates, and greater depths of cut. After listing the functions of cutting fluids, this article then covers the major types, characteristics, advantages and limitations of cutting and grinding fluids, such as cutting oils, water-miscible fluids, gaseous fluids, pastes, and solid lubricants along with their subtypes. It discusses the factors considered during the selection of cutting fluid, focusing on machinability (or grindability) of the material, compatibility (metallurgical, chemical, and human), and acceptability (fluid properties, reliability, and stability). The article also describes various application methods of cutting fluids and precautions that should be observed by the operator.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003179
EISBN: 978-1-62708-199-3
...; some are made of carbon or alloy steel with hardfaced cutting edges or with inserts of tool steel or cemented carbide. The composition, thickness, and quantity of metal being sheared are the most important factors in the selection of knife material. Rotary shearing, or circle shearing (not to be...
Abstract
This article discusses the operating principles, types, and applications of shearing and slitting of different forms of steel, including plates, flat sheets, bars, coiled sheet and strips. In addition, it provides a detailed account of the cutting methods such as oxyfuel gas cutting, plasma arc cutting, oxygen arc cutting, laser beam cutting, and air carbon arc cutting and gouging, describing their process capabilities, equipment used, operating principles and parameters, and factors affecting their efficiency.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003061
EISBN: 978-1-62708-200-6
... parameters affecting wear of ceramics, namely, hardness, thermal conductivity, fracture toughness, and corrosion resistance. The next part of the article addresses temperature-resistant applications of advanced ceramics. Specific applications of ceramic materials addressed include cutting tools, pump and...
Abstract
Structural applications for advanced ceramics include mineral processing equipment, machine tools, wear components, heat exchangers, automotive products, aerospace components, and medical products. This article begins with an overview of the wear-resistant applications and the parameters affecting wear of ceramics, namely, hardness, thermal conductivity, fracture toughness, and corrosion resistance. The next part of the article addresses temperature-resistant applications of advanced ceramics. Specific applications of ceramic materials addressed include cutting tools, pump and valve components, rolling elements and bearings, paper and wire manufacturing, biomedical implants, heat exchangers, adiabatic diesel engines, advanced gas turbines, and aerospace applications.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003202
EISBN: 978-1-62708-199-3
... Abstract All tool steels are heat treated to develop specific combinations of wear resistance, resistance to deformation or breaking under loads, and resistance to softening at elevated temperature. This article describes recommended heat treating practices, such as normalizing, annealing...
Abstract
All tool steels are heat treated to develop specific combinations of wear resistance, resistance to deformation or breaking under loads, and resistance to softening at elevated temperature. This article describes recommended heat treating practices, such as normalizing, annealing, austenitizing, quenching, preheating, and tempering commonly employed in certain steels. These are water-hardening tool steels, shock-resisting tool steels, oil-hardening cold-work tool steels, medium-alloy air-hardening cold-work tool steels, high-carbon high-chromium cold-work tool steels, hot-work tool steels, high-speed tool steels, low-alloy special-purpose tool steels, and mold steels. The article presents tables that list the temperature ranges, holding time, and hardness values for all of these heat treating processes.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004041
EISBN: 978-1-62708-185-6
... machining spindle speed surface cutting speeds FORGING DIES or inserts are machined from solid blocks or forged die steels. By using standard support components such as die holders and guide pins, which ensure the overall functionality of tooling assembly, the time necessary for manufacturing a die...
Abstract
This article reviews the methods of machining and finishing forging dies. It illustrates different stages in die manufacturing. The article provides a brief description on requirements and characteristics of high-speed machining tools, including feed rates, spindle speed, surface cutting speeds, and high acceleration and deceleration capabilities. It discusses electrodischarge machining process and electrochemical machining process. The article concludes with information on die-making methods.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004004
EISBN: 978-1-62708-185-6
... the various components of a cold-heading machine and the tools used in the cold heading process. These include headers, transfer headers, bolt makers, nut formers, and parts formers. The article explains the operations required for preparing stock for cold heading, including heat treating, drawing to...
Abstract
Cold heading is typically a high-speed process where a blank is progressively moved through a multi-station machine. This article discusses various cold heading process parameters, such as upset length ratio, upset diameter ratio, upset strain, and process sequence design. It describes the various components of a cold-heading machine and the tools used in the cold heading process. These include headers, transfer headers, bolt makers, nut formers, and parts formers. The article explains the operations required for preparing stock for cold heading, including heat treating, drawing to size, machining, descaling, cutting to length, and lubricating. It lists the advantages of the cold heading over machining. Materials selection criteria for dies and punches in cold heading are also described. The article provides examples that demonstrate tolerance capabilities and show dimensional variations obtained in production runs of specific cold-headed products. It concludes with a discussion on the applications of warm heading.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003041
EISBN: 978-1-62708-200-6
... autoclave molding. It also describes the tooling configuration and type of tooling which includes aluminum and steel tooling, electroformed nickel tooling, graphite-epoxy tooling, and elastomeric tooling. autoclave molding autoclave molding materials autoclave system composites laminates layup...
Abstract
Autoclave molding is a process used to impart a controlled heat and pressure cycle cure to a layup. This article describes the materials used for preparing a layup, including peel ply, separator, bleeder, barrier, breather, dam, and vacuum bag. It describes the major elements and functions of an autoclave system, including pressure vessel, gas stream heating and circulation sources, gas stream pressurizing systems, vacuum systems, control systems, and loading systems. The article includes information about modified autoclaves for specialized applications and safety practices in autoclave molding. It also describes the tooling configuration and type of tooling which includes aluminum and steel tooling, electroformed nickel tooling, graphite-epoxy tooling, and elastomeric tooling.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003114
EISBN: 978-1-62708-199-3
..., grindability, weldability, and hardenability, and presents a short note on machining allowances. composition limits fabrication characteristics machining allowances mechanical properties surface treatments wrought tool steels A TOOL STEEL is any steel used to make tools for cutting, forming, or...
Abstract
This article discusses the characteristics, composition limits, and classification of wrought tool steels, namely high-speed steels, hot-work steels, cold-work steels, shock-resisting steels, low-alloy special-purpose steels, mold steels, water-hardening steels, powder metallurgy tool steels, and precision-cast tool steels. It describes the effects of surface treatments on the basic properties of tool steels, including hardness, resistance to wear, deformation, and toughness. The article provides information on fabrication characteristics of tool steels, including machinability, grindability, weldability, and hardenability, and presents a short note on machining allowances.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001230
EISBN: 978-1-62708-170-2
... Section, finishing as a surface generation process is broadly classified as follows. “Finishing Methods Using Defined Cutting Edges.” Many finishing processes use tools of well-defined geometry. Typical examples are turning, milling, and drilling. “Finishing Methods Using Multipoint or Random...
Abstract
This article focuses on the various technology drivers for finishing methods, namely, tolerance, consistency, surface quality, and productivity. Every finishing method may be viewed as a manufacturing system consisting of four input categories: machine tool, processing tool, work material, and operational factors. The article provides a classification of finishing as a surface generation process and addresses the characteristics of the generated surfaces and the methods used to measure them. It describes the thermomechanical interactions occurring between the processing tool and the work material in the presence of machine tool and operational factors.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003194
EISBN: 978-1-62708-199-3
...; however, a general-purpose machine tool is not regularly available. Each application is engineered to meet the requirements as found by sample test cuts made to determine the exact values for the key operating parameters. Equipment generating pressures up to 415 MPa (60 ksi) is commercially available with...
Abstract
This article is a comprehensive collection of summary charts that provide data and information that are helpful in considering and selecting applicable processes alternative to the conventional material-removal processes. Process summary charts are provided for electrochemical machining, electrical discharge machining, chemical machining, abrasive jet machining, laser beam machining, electron beam machining, ultrasonic impact grinding, hydrodynamic machining, thermochemical machining, abrasive flow machining, and electrical discharge wire cutting.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004012
EISBN: 978-1-62708-185-6
... surface speeds in modern thread rolling equipment with the surface speeds of thread cutting tools. Table 8 shows the approximate thread rolling time for different spindle speeds used with tangential-infeed double-roll attachments. Table 7 Operating speeds of thread rolling and thread cutting tools...
Abstract
Thread rolling is a cold-forming process for producing threads or other helical or annular forms by rolling the impression of hardened steel dies into the surface of a cylindrical or conical blank. Methods that use cylindrical dies are classified as radial infeed, tangential feed, through feed, planetary, and internal. This article focuses on the capabilities, limitations, and machines used for these methods. It describes the three characteristics, such as rollability, flaking, and seaming, used in evaluating and selecting metals for thread rolling. The article explores the factors affecting die life and explains the effect of thread form on processing. It provides information on various fluids used in thread rolling to cool the dies and the work and to improve the finish on the rolled products. The article provides a comparison between thread rolling and cutting, as well as between thread rolling and grinding.