Skip Nav Destination
Close Modal
By
A.T. Santhanam, D.T. Quinto
By
T.J. Clark, R.C. DeVries
By
Scott Wilson
By
Gerald L. DePoorter, Terrence K. Brog, Michael J. Readey
By
Ulrike Täffner, Veronika Carle, Ute Schäfer, Michael J. Hoffmann
Search Results for
cubic boron nitride abrasives
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 141
Search Results for cubic boron nitride abrasives
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Typical incursion test outcomes for (a) flame-sprayed NiCrAl-bentonite agai...
Available to PurchasePublished: 01 August 2013
-polyester abradable coatings sprayed to optimum hardness levels and tested against cubic boron nitride abrasive-tipped IN718 blades
More
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002152
EISBN: 978-1-62708-188-7
... Abstract Superabrasives collectively refer to the diamond and cubic boron nitride (CBN) abrasives used in grinding applications. This article discusses the classification of superabrasive wheels according to a variety of sizes and shapes, construction, concentration, and bond systems...
Abstract
Superabrasives collectively refer to the diamond and cubic boron nitride (CBN) abrasives used in grinding applications. This article discusses the classification of superabrasive wheels according to a variety of sizes and shapes, construction, concentration, and bond systems. It provides information on the applications of the superabrasive wheels depending on the factors of the grinding system. These factors include machine tool variables, work material, wheel selection, and operational factors. The article describes the methods available for superabrasive wheel truing in production grinding operations, namely, stationary tool, powered, and form truings. It reviews the truing methods, such as truing with abrasive wheels and hard ceramics, for batch production. The article explains practical methods available for dressing CBN wheels, namely, abrasive stick, abrasive-jet, slurry, and high-pressure waterjet dressing. It concludes with information on the conditioning process of the CBN wheel.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002127
EISBN: 978-1-62708-188-7
... Abstract Diamond and cubic boron nitride (CBN) are the two hardest materials known. They have found numerous applications in industry, both as ultrahard abrasives and as cutting tools. This article reviews the high-pressure synthesis and fabrication techniques of these materials. It discusses...
Abstract
Diamond and cubic boron nitride (CBN) are the two hardest materials known. They have found numerous applications in industry, both as ultrahard abrasives and as cutting tools. This article reviews the high-pressure synthesis and fabrication techniques of these materials. It discusses their wear resistance, tool geometries, and machining parameters. The article also explains their application as cutting tools in the field of machining.
Book Chapter
Surface Engineering of Carbide, Cermet, and Ceramic Cutting Tools
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001320
EISBN: 978-1-62708-170-2
... Abstract The classes of tool materials for machining operations are high-speed tool steels, carbides, cermets, ceramics, polycrystalline cubic boron nitrides, and polycrystalline diamonds. This article discusses the expanding role of surface engineering in increasing the manufacturing...
Abstract
The classes of tool materials for machining operations are high-speed tool steels, carbides, cermets, ceramics, polycrystalline cubic boron nitrides, and polycrystalline diamonds. This article discusses the expanding role of surface engineering in increasing the manufacturing productivity of carbide, cermet, and ceramic cutting tool materials used in machining operations. The useful life of cutting tools may be limited by a variety of wear processes, such as crater wear, flank wear or abrasive wear, builtup edge, depth-of-cut notching, and thermal cracks. The article provides information on the applicable methods for surface engineering of cutting tools, namely, chemical vapor deposited (CVD) coatings, physical vapor deposited coatings, plasma-assisted CVD coatings, diamond coatings, and ion implantation.
Book Chapter
Superabrasives and Ultrahard Tool Materials
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001106
EISBN: 978-1-62708-162-7
... Abstract Synthetic diamond and cubic boron nitride are among a class of superhard materials from the boron-carbon-nitrogen-silicon family of elements. This article focuses on the two materials, the forms in which they are produced, and their respective properties. Synthetic diamond and cubic...
Abstract
Synthetic diamond and cubic boron nitride are among a class of superhard materials from the boron-carbon-nitrogen-silicon family of elements. This article focuses on the two materials, the forms in which they are produced, and their respective properties. Synthetic diamond and cubic boron nitride compounds are available in the form of grit and sintered polycrystalline blanks of various size, shape, and composition. The article explains how superabrasive grains made from these materials can be used in lapping, polishing, and grinding applications, and how diamond and boron nitride blanks can be mounted to suitable substrates to form ultrahard cutting edges and tools.
Image
Grindability survey comparing resin-bonded wheels containing 150-grit metal...
Available to PurchasePublished: 01 November 1995
Fig. 13 Grindability survey comparing resin-bonded wheels containing 150-grit metal coated abrasives to evaluate capabilities of both friable diamond and cubic boron nitride (CBN) abrasives in grinding technical ceramics. (a) Grinding ratio. (b) Specific energy. The specific grinding rate, Q
More
Image
Toughness of superabrasives shown as a function of abrasive grain size. In ...
Available to PurchasePublished: 01 November 1995
Image
(a) Protective MnS layers on the cutting edge of a polycrystalline cubic bo...
Available to PurchasePublished: 31 August 2017
Fig. 15 (a) Protective MnS layers on the cutting edge of a polycrystalline cubic boron nitride (PCBN) cutting tool insert when cutting graphite iron at high speed. (b) The same cutting material exhibits abrasive wear in compacted graphite iron (CGI) without MnS inclusions. Reprinted
More
Book Chapter
Abradable Thermal Spray Applications and Technology
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005738
EISBN: 978-1-62708-171-9
... yttria-stabilized zirconia-polyester abradable coatings sprayed to optimum hardness levels and tested against cubic boron nitride abrasive-tipped IN718 blades Aging, Corrosion, Thermal Cycle, and Thermal Shock Testing Apart from good abradability, coating resistance to thermal shock and thermal...
Abstract
This article provides an overview of key abradable thermal spray coating systems based on predominant function and key design criteria. It describes two families of coatings which have evolved for use at higher temperature: flame (combustion)-sprayed abradable powders and atmospheric plasma-sprayed abradable powders. Three classic examples of flame spray abradables are nickel-graphite powders, NiCrAl-bentonite powders, and NiCrFeAl-boron nitride powders. The article provides information on various abradable coating testing procedures, namely, abradable incursion testing; aging, corrosion, thermal cycle and thermal shock testing; hardness testing; and erosion resistance testing.
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.9781627081887
EISBN: 978-1-62708-188-7
Book Chapter
Abbreviations and Symbols: Machining
Available to PurchaseBook: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0005701
EISBN: 978-1-62708-188-7
... (denotes rate of change); diameter HB Brinell hardness AlA Aerospace Industries Association D diameter; distance HBN hexagonal boron nitride AISI American Iron and Steel Institute hcp hexagonal close-packed AJM abrasive jet machining DE equivalent diameter HIP hot isostatic pressing ANSI American National...
Book Chapter
Cutting Tool Materials
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003188
EISBN: 978-1-62708-199-3
... conditions by chemical vapor deposition. Fig. 5 Typical hardness values of hard/abrasive materials and some work materials Cubic boron nitride, which has a hardness of 4700 HK, is the material of choice for machining steels with hardnesses exceeding 50 HRC. Other applications include machining...
Abstract
Selecting the proper cutting tool material for a specific machining application can provide substantial advantages, including increased productivity, improved quality, and reduced costs. This article begins with a description of the factors affecting the selection of a cutting tool material. This is followed by a schematic representation of their relative application ranges in terms of machining speeds and feed rates. The article provides a detailed account of chemical compositions of various tool materials, including high-speed tool steels, cobalt-base alloys, cemented carbides, cermets, ceramics, cubic boron nitride, and polycrystalline diamond. It compares the toughness, and wear resistance for these cutting tool materials. Finally, the article explains the steps for selecting tool material grades for specific application.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006306
EISBN: 978-1-62708-179-5
... ( Fig. 16 ). Fig. 15 (a) Protective MnS layers on the cutting edge of a polycrystalline cubic boron nitride (PCBN) cutting tool insert when cutting graphite iron at high speed. (b) The same cutting material exhibits abrasive wear in compacted graphite iron (CGI) without MnS inclusions. Reprinted...
Abstract
Machining of cast iron involves removing metal from the cast part, usually by cutting with a power-driven machine tool. This article discusses the factors that influence machinability, the methods used to evaluate machinability of cast irons, the effects of cast iron microstructure on cutting tool life, and the importance of as-cast surface integrity on the machining variation. It presents examples of cutting tool materials selection for different cast iron grades, and describes the effects of coolants on the machining of cast irons. A chart showing different cutting materials and cutting speed ranges for selected iron-carbon alloys is also presented. Different types of cutting tool wear observed during turning are schematically illustrated.
Book Chapter
Grinding
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003193
EISBN: 978-1-62708-199-3
... are identified in the standard marking system for conventional abrasive products (aluminum oxide or silicon carbide abrasives) in Fig. 1 . Figure 2 shows the standard marking system for superabrasive products (diamond or cubic boron nitride). Although standard marking systems are available (ANSI B74.13-1990...
Abstract
In all grinding operations, care must be used in the selection of wheels and abrasive belts to meet finish and tolerance requirements without damaging the workpiece. This article discusses the major aspects of the grinding wheel, including production methods, selection considerations, standard marking systems, abrasives, and bonding types. It compares bonded wheel grinding with abrasive belt grinding. The article reviews the types of grinding fluids and discusses their importance in grinding operations. It describes the specific grinding processes and provides recommendations for grinding and grinding wheels.
Book Chapter
Crystallography and Engineering Properties of Ceramics
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003059
EISBN: 978-1-62708-200-6
... Abstract This article provides crystallographic and engineering data for single oxide ceramics, zirconia, silicates, mullite, spinels, perovskites, borides, carbides, silicon carbide, boron carbide, tungsten carbide, silicon-nitride ceramics, diamond, and graphite. It includes data on crystal...
Abstract
This article provides crystallographic and engineering data for single oxide ceramics, zirconia, silicates, mullite, spinels, perovskites, borides, carbides, silicon carbide, boron carbide, tungsten carbide, silicon-nitride ceramics, diamond, and graphite. It includes data on crystal structure, density, mechanical properties, physical properties, electrical properties, thermal properties, and magnetic properties.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006431
EISBN: 978-1-62708-192-4
... diamond and cubic boron nitride are harder—with strong chemical bonds and a hard surface that minimizes wear in extreme abrasive environments. Due to its extreme abrasion resistance it is sometimes called “black diamond.” Boron carbide also resists high temperatures, up to approximately 400 °C (750 °F...
Abstract
There are huge numbers of publications and data available on ceramics, especially the basic types that cover their friction, wear, tribological mechanisms, high-temperature behavior, tribochemistry, and also lubrication conditions. This article summarizes the key overall research findings found in several comprehensive monographs. It discusses the types and properties of structural ceramics, as well as typical properties that govern the friction and wear of ceramics. The article reviews the superlow friction of silicon nitride and silicon carbide, and describes wear-protective hydrated tribochemical layers. It concludes with information on the tribological applications of structural ceramics and composites.
Book Chapter
Final Shaping and Surface Finishing of Ceramics
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003055
EISBN: 978-1-62708-200-6
... of superabrasives shown as a function of abrasive grain size. In addition, the most effective bond system for each of the three ranges of diamond toughness (A, high toughness; B, medium toughness; C, low toughness) is described in terms of modulus of resilience (MOR). CBN, cubic boron nitride High-production...
Abstract
Ceramics usually require some form of machining prior to use to meet dimensional and surface quality standards. This article focuses on abrasive machining, particularly grinding, and addresses common methods and critical process factors. It covers cylindrical, centerless, and disk grinding and provides information on tooling, wheel selection, work material, and operational factors. It also discusses precision slicing and slotting, lapping, honing, and polishing as well as abrasive waterjet, electrical discharge, laser, and ultrasonic machining.
Book Chapter
Abbreviations and Symbols: Cast Iron Science and Technology
Available to PurchaseSeries: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006352
EISBN: 978-1-62708-179-5
... P pressure, percentage of pearlite, Peclet number, UI uninoculated performance metric, load UTS ultimate tensile strength PAW plasma arc welding UV ultraviolet PCBN polycrystalline cubic boron nitride v speci c volume, volume, velocity Abbreviations and Symbols / 751 V pouring device heat loss «-N...
Book Chapter
Structural Ceramics
Available to PurchaseSeries: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001107
EISBN: 978-1-62708-162-7
..., and properties of aluminum oxides, aluminum titanate, silicon carbide, boron carbide, zirconia, silicon nitride, silicon-aluminum-oxynitride, and several ceramic composites. It also explains how these materials maintain their mechanical strength and dimensional tolerances at high temperatures and how some...
Abstract
This article discusses the properties and uses of structural ceramics and the basic processing steps by which they are made. It describes raw material preparation, forming and fabrication, thermal processing, and finishing. It provides information on the composition, microstructure, and properties of aluminum oxides, aluminum titanate, silicon carbide, boron carbide, zirconia, silicon nitride, silicon-aluminum-oxynitride, and several ceramic composites. It also explains how these materials maintain their mechanical strength and dimensional tolerances at high temperatures and how some of their shortcomings are being addressed.
Book Chapter
Preparation and Microstructural Analysis of High-Performance Ceramics
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003795
EISBN: 978-1-62708-177-1
... of aluminum oxide, zirconium dioxide, aluminum nitride, silicon carbide, and piezoelectric ceramics. ceramographic etching grinding high-tech ceramics microstructure mounting piezoelectric ceramics polishing scanning electron microscopy sectioning specimen preparation technical ceramics...
Abstract
Microstructural analysis reveals many important details about the qualities and capabilities of high-performance ceramics. This article explains how to prepare ceramic samples for imaging and the imaging technologies normally used. It describes sectioning, mounting, grinding, and polishing as well as ceramographic etching. It discusses common imaging approaches, including scanning electron microscopy and thin-section polarized light techniques, a type of optical microscopy. The article also addresses microstructural classification, examining detailed micrographs from samples of aluminum oxide, zirconium dioxide, aluminum nitride, silicon carbide, and piezoelectric ceramics.
1