Skip Nav Destination
Close Modal
Search Results for
crystallographic orientation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 467 Search Results for
crystallographic orientation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Magnetically Soft Materials
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 1 Crystallographic orientation of iron showing ease of magnetization in the three principal directions
More
Image
Published: 01 January 1996
Image
in Modeling and Simulation of Microstructure Evolution during Heat Treatment of Titanium Alloys
> Heat Treating of Nonferrous Alloys
Published: 01 June 2016
Fig. 23 Illustrations of all special crystallographic orientation relationships among grain-boundary α (red) and two adjacent β grains (blue and green) that are able to hold the Burgers orientation relationship with the grain-boundary α. (a) Type 1: 10.52°/⟨110⟩ β . (b) Type II: 49.48°/49.48
More
Image
in Microstructure-Sensitive Modeling and Simulation of Fatigue
> Fundamentals of Modeling for Metals Processing
Published: 01 December 2009
Fig. 11 (Top) Pole figures for crystallographic orientation distribution. RD, rolling direction; TD, transverse direction. (Bottom) Distribution of Fatemi-Socie parameter ( P FS ) for these textures, with loading along the transverse direction
More
Image
Published: 31 August 2017
Fig. 64 Crystallographic orientation map obtained by electron backscatter diffraction of a gray iron sample treated with direct austempering after solidification. See also the article “Microstructures and Characterization of Gray Irons” for more details.
More
Image
Published: 15 June 2020
Fig. 5 Crystallographic orientation map corresponding to inverse pole figure for face-centered cubic nickel obtained on cross section of electron-beam-melted build obtained through electron backscatter diffraction. Source: Ref 47
More
Image
in Process-Structure Relationships in Fusion Metals Additive Manufacturing
> Additive Manufacturing Design and Applications
Published: 30 June 2023
Fig. 8 Crystallographic orientation map corresponding to inverse pole figure for face-centered cubic nickel, showing the letters “D,” “O,” and “E” formed through misoriented grain growth. Source: Ref 25
More
Image
Published: 01 January 1996
Fig. 19 Cleavagelike, crystallographic oriented stage I fatigue fracture in a cast Ni-14Cr-4.5Mo-1Ti-6Al-1.5Fe-2.0(Nb+Ta) alloy
More
Image
Published: 01 January 1987
Fig. 16 Stage I fatigue appearance. (a) Cleavagelike, crystallographically oriented State I fatigue fracture in a cast Ni-14Cr-4.5Mo-1Ti-6Al-1.5Fe-2.0(Nb + Ta) alloy. (b) Stair-step fracture surface indicative of Stage I fatigue fracture in a cast ASTM F75 cobalt-base alloy. SEM. (R. Abrams
More
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001759
EISBN: 978-1-62708-178-8
... measurements and subsequent analysis based on Euler plots (i.e., pole figures), orientation distribution functions, and stereographic projections. Using detailed illustrations and examples, it explains the significance of preferred crystallographic orientations and their influence on properties and material...
Abstract
Crystallographic texture measurement and analysis is an important tool for correlating material properties with microstructural features. This article describes the general approach to quantifying crystallographic texture, namely, the collection of statistical data from grain measurements and subsequent analysis based on Euler plots (i.e., pole figures), orientation distribution functions, and stereographic projections. Using detailed illustrations and examples, it explains the significance of preferred crystallographic orientations and their influence on properties and material behavior. The article also discusses sample selection and preparation as well as the challenges and limitations of various methods.
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005507
EISBN: 978-1-62708-197-9
... Abstract Grain boundaries are interfaces between crystallites of the same phase but different crystallographic orientation. They can be characterized as being low angle or high angle. This article discusses the measurements of grain-boundary energy with a brief summary of different schemes...
Abstract
Grain boundaries are interfaces between crystallites of the same phase but different crystallographic orientation. They can be characterized as being low angle or high angle. This article discusses the measurements of grain-boundary energy with a brief summary of different schemes for measuring grain-boundary surface tension. The atomistic simulations of grain-boundary energy, measurement of grain-boundary migration and the techniques used to monitor grain-boundary migration are reviewed. Several considerations and effects influencing the computation of grain-boundary mobility are also discussed.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004028
EISBN: 978-1-62708-185-6
... in technological applications. The article defines the basic kinematic tensors, reports their relations, and presents expressions for calculating the change in crystallographic orientation associated with plastic deformation. It surveys some of the polycrystal models in terms of the relative strength...
Abstract
This article outlines several polycrystal formulations commonly applied for the simulation of plastic deformation and the prediction of deformation texture. It discusses the crystals of cubic and hexagonal symmetry that constitute the majority of the metallic aggregates used in technological applications. The article defines the basic kinematic tensors, reports their relations, and presents expressions for calculating the change in crystallographic orientation associated with plastic deformation. It surveys some of the polycrystal models in terms of the relative strength of the homogeneous effective medium (HEM). The article analyzes the anisotropy predictions of rolled face-centered-cubic and body centered-cubic sheets and presents simulations of the axial deformation of hexagonal-close-packed zirconium. The applications of polycrystal constitutive models to the simulation of complex forming operations, through the use of the finite element method, are also presented.
Series: ASM Handbook Archive
Volume: 10
Publisher: ASM International
Published: 01 January 1986
DOI: 10.31399/asm.hb.v10.a0001767
EISBN: 978-1-62708-178-8
... of the instrumentation and principles of SEM, broadly explaining its capabilities in resolution and depth of field imaging. It describes three additional functions of SEM, including the use of channeling patterns to evaluate the crystallographic orientation of micron-sized regions; use of backscattered detectors...
Abstract
Scanning electron microscopy (SEM) has shown various significant improvements since it first became available in 1965. These improvements include enhanced resolution, dependability, ease of operation, and reduction in size and cost. This article provides a detailed account of the instrumentation and principles of SEM, broadly explaining its capabilities in resolution and depth of field imaging. It describes three additional functions of SEM, including the use of channeling patterns to evaluate the crystallographic orientation of micron-sized regions; use of backscattered detectors to reveal grain boundaries on unetched samples and domain boundaries in ferromagnetic alloys; and the use of voltage contrast, electron beam-induced currents, and cathodoluminescence for the characterization and failure analysis of semiconductor devices. The article compares the features of SEM with that of scanning Auger microscopes, and lists the applications and limitations of SEM.
Image
Published: 01 January 2002
Fig. 36 SEM fracture-surface analysis of the failed hip prosthesis shown in Fig. 33 . (a) Fracture surface showing three distinct grains labeled A, B, and C. (b) Grain A has a shallow crystallographically oriented fracture structure. (c) Grain B has a crystallographically oriented fracture
More
Image
Published: 01 January 2002
Fig. 25 Fatigue-fracture structures on wrought type ASTM F563 cobalt-alloy test specimens that fatigued in air. (a) Very fine fatigue striations are superimposed on crystallographically oriented fracture structures. 2480×. (b) Crystallographically oriented fracture morphology showing twin
More
Image
Published: 01 June 2024
Fig. 22 Mixed-mode fracture through a pearlitic steel where a single grain fractured by cleavage, likely due to crystallographic orientation. Original magnification: 1500×
More
Series: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005532
EISBN: 978-1-62708-197-9
... Abstract This article discusses the central aspect of anisotropy modeling, namely, texture measurement and analysis. It provides an overview of the methods available for characterizing crystallographic preferred orientation, or texture, in polycrystalline materials. These methods include pole...
Abstract
This article discusses the central aspect of anisotropy modeling, namely, texture measurement and analysis. It provides an overview of the methods available for characterizing crystallographic preferred orientation, or texture, in polycrystalline materials. These methods include pole figure measurement and electron backscatter diffraction (EBSD). The article describes the process considerations for pole figure measurement, including X-ray diffraction, neutron diffraction, stereographic projection, equal area projection, graphing pole figures, typical textures, and orientation distribution. It also deals with the limitations and challenges associated with the EBSD, and applications of the diffraction.
Image
in Preparation and Microstructural Analysis of High-Performance Ceramics
> Metallography and Microstructures
Published: 01 December 2004
Fig. 22 Scanning electron micrograph of an AlN ceramic, densified with 2.5 wt% La 2 O 3 . Etching attack of AlN grains depends on crystallographic orientation. A secondary phase (LaAlO 3 ) is retained in the microstructure and appears bright.
More
Image
in Formation of Microstructures, Grain Textures, and Defects during Solidification
> Metals Process Simulation
Published: 01 November 2010
Fig. 14 (a) Optical micrograph showing shiny and dull sectors in an Al-Zn-Si coating. (b) Numerical simulation of the surface appearance with a geometrical approach for a grain having the same crystallographic orientation with respect to the coating in (a). Source: Ref 150
More
Image
Published: 31 August 2017
Fig. 1 (left) Gray iron sample treated with direct austempering after solidification. (right) Crystallographic orientation map obtained by electron backscatter diffraction (EBSD). See the article “Metallography and Microstructures of Cast Iron” in this Volume for a color version of the EBSD
More
1