1-20 of 819 Search Results for

crystal-plasticity mechanics

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005168
EISBN: 978-1-62708-186-3
... for both continuum and crystal-plasticity mechanics are also discussed. The article also provides various examples that illustrate the simulation of aluminum sheet forming. aluminum alloy sheet metals aluminum sheet forming compressive instability continuum mechanics crystal-plasticity mechanics...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004018
EISBN: 978-1-62708-185-6
... DEFORMATION, or the permanent distortion under applied stress, can occur in metals from various mechanisms, such as: Slip from the motion of dislocations (line imperfections) in the crystal structure Twinning, where the crystallographic orientation changes significantly in the region of plastic...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002464
EISBN: 978-1-62708-194-8
.... The article describes the effects of structure on thermal and mechanical properties. It reviews the chemical, optical, and electrical properties of engineering plastics and commodity plastics. An explanation of important physical properties, many of which are unique to polymers, is also included. The factors...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006931
EISBN: 978-1-62708-395-9
... the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy, differential scanning calorimetry, differential thermal analysis, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses the use of X-ray diffraction for analyzing...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005424
EISBN: 978-1-62708-196-2
... the symmetries are anisotropies of the mechanical properties, both elastic and plastic, of the individual crystals. Anisotropy is evident even at the continuum scale in aggregates of crystals having preferred orientations of the crystal lattices, known as crystallographic texture. The behaviors observed during...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003254
EISBN: 978-1-62708-176-4
... between average (mean) plastic strain ratio (r m ) and crystallographic texture. Source: Ref 11 Strength of Metals Thus far, the mechanical properties of crystalline metals have been discussed only in relationship to the crystal lattice. Because most metals are comprised of many grains (see...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004028
EISBN: 978-1-62708-185-6
... Abstract This article outlines several polycrystal formulations commonly applied for the simulation of plastic deformation and the prediction of deformation texture. It discusses the crystals of cubic and hexagonal symmetry that constitute the majority of the metallic aggregates used...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006915
EISBN: 978-1-62708-395-9
..., and addresses related considerations such as melt viscosity and melt strength, crystallization, orientation, die swell, melt fracture, shrinkage, molded-in stress, and polymer degradation. composition elastic modulus engineering plastics polymer properties polymer structure shear rate...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002459
EISBN: 978-1-62708-194-8
... in a manner entirely apart from glass-reinforced plastic. The keys to the remarkable mechanical behavior of glass-reinforced plastic are the arrangement of the glass fibers in the continuous plastic matrix, the properties of the glass and plastic (due to their individual compositions and structures...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002354
EISBN: 978-1-62708-193-1
.... The transfer of the J -integral of elastic-plastic fracture mechanics as a parameter to characterize the situation at the crack tip under monotonic straining ( Ref 9 , 10 ) to cyclic loading ( Ref 11 ) has been shown to be successful in numerous studies (e.g., Ref 12 , 13 , 14 ). The value of Δ J...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002355
EISBN: 978-1-62708-193-1
.... In polycrystalline materials, PSBs are confined mainly to the surface grains. In single crystals, their volume fraction increases with both the number of cycles and the loading amplitude. After a sufficiently high number of loading cycles, the entire crystal is filled with PSBs. The plastic strain amplitude...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006282
EISBN: 978-1-62708-169-6
... The predominant mode of plastic deformation in titanium is slip. The most common crystallographic slip planes in hexagonal (alpha, or α) titanium are the basal, prismatic, and pyramidal. The planes operating during deformation depend on alloy composition, temperature, grain size, and crystal orientation...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005418
EISBN: 978-1-62708-196-2
... considering the macroscopic properties of a polycrystalline metal or alloy, the texture ( Ref 1 ), that is, the crystal orientation distribution, is the primary contributor to elastic and plastic anisotropy arising from the anisotropy of single crystals. Of course, the grain morphology and microstructural...
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006672
EISBN: 978-1-62708-213-6
...: Determination of Temperature and Enthalpy of Melting and Crystallization” ISO 11357-4 “Plastics—Differential Scanning Calorimetry (DSC) Part 4: Determination of Specific Heat Capacity” ISO 11357-5 “Plastics—Differential Scanning Calorimetry (DSC) Part 5: Determination of Characteristic Reaction-Curve...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003025
EISBN: 978-1-62708-200-6
... Abstract Mechanical properties are often the most important properties in the design and selection of engineering plastics. Temperature, molecular structure, crystallinity, viscoelasticity, and effects of environment, fillers and reinforcements are considered as the basic factors affecting...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005413
EISBN: 978-1-62708-196-2
..., stage IV work hardening, and the various classes of single-phase alloys. internal-state variable modeling plastic flow stress-strain behavior polycrystal modeling face-centered cubic metals strain rate diffusion hexagonal metals work hardening IF AN ABSOLUTELY PERFECT SINGLE CRYSTAL...
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006933
EISBN: 978-1-62708-395-9
... spectroscopy, energy-dispersive x-ray spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and dynamic mechanical analysis. The article describes the methods for molecular weight assessment and mechanical testing to evaluate plastics and polymers. The descriptions of the analytical...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005405
EISBN: 978-1-62708-196-2
... crystal-plasticity slip measures do not reflect this irreversibility, nor do they employ any predictive means to account for it. Grain boundaries are treated largely as compatibility surfaces (mechanical effects of misorientation) without acknowledging effects of their structure on dislocation...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004019
EISBN: 978-1-62708-185-6
... a metal is cold worked by plastic deformation, a small portion of the mechanical energy expended in deforming the metal is stored in the specimen. This stored energy resides in the crystals as point defects (vacancies and interstitials), dislocations, and stacking faults in various forms and combinations...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
... separates inelastic deformation from plastic deformation is that inelastic deformation is time-independent, while plastic deformation may include both time-independent mechanisms as well as time-dependent mechanisms. The movement of dislocation is primarily driven by shear stresses and may be altered by any...