Skip Nav Destination
Close Modal
Search Results for
cryogenic applications
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 325 Search Results for
cryogenic applications
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1993
Fig. 1 Yield strength versus temperature (4 to 300 K) for various base metals and weld metals that have been studied for cryogenic applications
More
Image
Published: 01 December 2004
. Note that the lower solution-annealing temperature is used for cryogenic applications (fine grain size), while the higher solution-annealing temperature is used for high-temperature applications (coarse grain size). (a) Original magnification 1000×. (b) Original magnification 100×
More
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001464
EISBN: 978-1-62708-173-3
... Abstract Cryogenic temperatures cause many structural alloys to become brittle, which is an unacceptable condition in most structural applications and is rectified by optimizing the weld composition. Although nonmatching weld compositions are most appropriate, differences between the welds...
Abstract
Cryogenic temperatures cause many structural alloys to become brittle, which is an unacceptable condition in most structural applications and is rectified by optimizing the weld composition. Although nonmatching weld compositions are most appropriate, differences between the welds and parent material in terms of thermal contraction, corrosion, and other factors must be considered. This article discusses these differences and describes the effect of these factors on the choice of the weld filler metal. It also provides a detailed discussion on the effects of cryogenic services on mechanical properties of the parent metal.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002404
EISBN: 978-1-62708-193-1
... at elevated temperatures. In addition, AISI type 300-series stainless steels are the most widely used structural alloys for cryogenic applications, because they exhibit high strength, ductility, and fracture toughness properties as well as low thermal expansion and low magnetic permeability. Extensive...
Abstract
This article describes the fracture toughness behavior of austenitic stainless steels and their welds at ambient, elevated, and cryogenic temperatures. Minimum expected toughness values are provided for use in fracture mechanics evaluations. The article explains the effect of crack orientation, strain rate, thermal aging, and neutron irradiation on base metal and weld toughness. It discusses the effect of cold-work-induced strengthening on fracture toughness. The article examines the fracture toughness behavior of aged base metal and welding-induced heat-affected zones. It concludes with a discussion on the Charpy energy correlations for aged stainless steels.
Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005822
EISBN: 978-1-62708-165-8
... Abstract Cold treating of steel can be used to enhance the transformation of austenite to martensite and improve the stress relief of castings and machined parts. Cryogenic treatment of steel is a distinct process that uses extreme cold to modify the performance of materials. This article...
Abstract
Cold treating of steel can be used to enhance the transformation of austenite to martensite and improve the stress relief of castings and machined parts. Cryogenic treatment of steel is a distinct process that uses extreme cold to modify the performance of materials. This article explains the practices employed and equipment used in the cold treatment of steel. It also presents the results of using cryogenic treatment to enhance steel properties.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003267
EISBN: 978-1-62708-176-4
... of this is the brittle fracture of ship hulls during WWII that occurred in the cold seas of the North Atlantic ( Ref 1 ). For many applications, low temperature refers to the cryogenic temperatures associated with liquid gases. Gas liquefaction, aerospace applications, and superconducting machinery are examples of areas...
Abstract
This article provides a discussion on the mechanical properties of metals, ceramics, and polymers and fiber-reinforced polymer composites at low temperatures. It reviews the factors to be considered in tensile and compression testing of these materials. The article details the equipment used for low-temperature tensile and compression tests with illustrations. It concludes with a discussion on the various test methods and their ASTM standard for compression and tension testing.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001461
EISBN: 978-1-62708-173-3
... in this Section details some of the requirements involved during the original construction phase or later in-place repairs of large maritime structures; in addition, reference material is provided to point the reader to other sources of information. Application of materials in cryogenic service (where...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001110
EISBN: 978-1-62708-162-7
... composites, including assembly, welding, isostatic compaction, extrusion, wire drawing, twisting, and final sizing. The article also provides a detailed account of the properties and applications of NbTi superconducting composites. composite fabrication techniques matrix materials niobium-titanium...
Abstract
Niobium-titanium alloys (NbTi) became the superconductors of choice in the early 1960s, providing a viable alternative to the A-15 compounds and less ductile alloys of niobium-zirconium. This can be attributed to the relative ease of fabrication, better electrical properties, and greater compatibility with copper stabilizing materials. This article discusses the ramifications of design requirements, selection criteria and processing methods of superconducting fibers and matrix materials. It provides information on the various steps involved in the fabrication of superconducting composites, including assembly, welding, isostatic compaction, extrusion, wire drawing, twisting, and final sizing. The article also provides a detailed account of the properties and applications of NbTi superconducting composites.
Image
in Aluminum-Lithium Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 7 Yield strengths of two aluminum-lithium candidate alloys for cryogenic tankage applications. Strain rate, 4 × 10 −4 /s with a 0.5-h hold at temperature
More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003143
EISBN: 978-1-62708-199-3
... primarily for cryogenic applications because of its retention of good toughness and ductility down to cryogenic temperatures (the ELI grade). It is these properties that result in its use on the hydrogen side of the high-pressure fuel turbopump of the Space Shuttle. Ti-5Al-2.5Sn has also been used...
Abstract
This article is a comprehensive collection of properties, compositions, and applications of standard grades of titanium and selected titanium alloys. It provides data regarding the common names, Unified Number System numbers, composition limits, typical uses with service temperatures, precautions in use, and general corrosion behavior of each. The applications of titanium alloys include aerospace, gas turbine engines and prostheses. Further, the article graphically presents a comparative study of fatigue, creep and tensile properties of various titanium alloys.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003140
EISBN: 978-1-62708-199-3
... microstructures and freedom from melting imperfections. For cryogenic applications, the interstitial elements oxygen, nitrogen, and carbon are carefully controlled (extra-low interstitial, or ELI) to improve ductility and fracture toughness. For these applications, the basic titanium alloy Ti-6Al-4V (or Ti-6Al-4V...
Abstract
Titanium and its alloys are used in various applications owing to its high strength, stiffness, good toughness, low density, and good corrosion resistance. This article discusses the applications of titanium and titanium alloys in gas turbine engine components, aerospace pressure vessels, optic-system support structures, prosthetic devices, and applications requiring corrosion resistance and high strength. It explains the effects of alloying elements in titanium alloys as they play an important role in controlling the microstructure and properties and describes the secondary phases and martensitic transformations formed in titanium alloy systems. Information on commercial and semicommercial grades and alloys of titanium is tabulated. The article also discusses the different grades of titanium alloys such as alpha, near-alpha alloys, alpha-beta alloys, beta alloys, and advanced titanium alloys (titanium-matrix composites and titanium aluminides).
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003158
EISBN: 978-1-62708-199-3
... longer life and better emf stability than type K thermocouples at elevated temperatures in air, both in the laboratory and in several industrial applications. Type T Type T thermocouples are used extensively for cryogenic measurements. The positive thermoelement is oxygen-free high conductivity...
Abstract
Thermocouple devices are the most widely used devices for measurement of temperature in the metals industry. Favorable characteristics of these devices include good accuracy, suitability over a wide temperature range, fast thermal response, ruggedness, high reliability, low cost, and great versatility of application. Thermocouples are grouped into two broad categories, namely, standard thermocouples, including five base-metal thermocouples and three noble-metal thermocouples that have been given letter designations, and nonstandard thermocouples, including iridium-rhodium, platinum-molybdenum, platinel, and tungsten-rhenium thermocouples. This article discusses the basic principles, classification, and properties of thermocouples, and the techniques for insulating and protecting thermocouple wires from the operating environment.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003196
EISBN: 978-1-62708-199-3
... the recommended temperatures for normalizing and austenitizing, it provides information on mechanism, cooling media, principal variables, process procedures, and applications of heat treating. In addition, the article gives a short note on the cold and cryogenic treatment of steel. age hardening annealing...
Abstract
This article describes the heat treating (stress relieving, normalizing, annealing, quenching, tempering, martempering, austempering, and age hardening) of different types of steels, including ultrahigh-strength steels, maraging steels, and powder metallurgy steels. Tabulating the recommended temperatures for normalizing and austenitizing, it provides information on mechanism, cooling media, principal variables, process procedures, and applications of heat treating. In addition, the article gives a short note on the cold and cryogenic treatment of steel.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001045
EISBN: 978-1-62708-161-0
..., low temperature (cryogenic) strength, and low-temperature toughness. These applications stem from the development of superconducting technologies used in transportation systems and nuclear fusion research and to meet the need for structural materials to store and transport liquefied gases. Table...
Abstract
This article discusses the composition, processing, and properties of austenitic manganese steel. Austenitic manganese steel is used in equipment for handling and processing earthen materials, such as rock crushers, grinding mills, dredge buckets, power shovel buckets and teeth, and pumps for handling gravel and rocks. The mechanical properties of austenitic manganese steel vary with both carbon and manganese content. Austenitic manganese steels are most commonly produced in electric arc furnaces using a basic melting practice. Heat treatment strengthens austenitic manganese steel so that it can be used safely and reliably in a wide variety of engineering applications. The approximate ranges of tensile properties produced in constructional alloy steels by heat treatment are developed in austenitic manganese steels by deformation-induced work hardening. Compared to most other abrasion-resistant ferrous alloys, manganese steels are superior in toughness and moderate in cost. Manganese steel is not corrosion resistant; it rusts readily. Many of the common applications of austenitic manganese steel involve welding, either for fabrication or for repair.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001063
EISBN: 978-1-62708-162-7
... structures; more recently, they have been investigated for use in cryogenic applications (for example, liquid oxygen and hydrogen fuel tanks for aerospace vehicles). The major development work began in the 1970s, when aluminum producers accelerated the development of aluminum-lithium alloys...
Abstract
Aluminum-lithium alloys have been developed primarily to reduce the weight of aircraft and aerospace structures. This article commences with a discussion on the physical metallurgy and development of aluminum-lithium alloys. It focuses on major commercial aluminum-lithium alloys, including alloy 2090, alloy 2091, alloy 8090, alloy CP276, and Weldalite 049. The article also lists the chemical compositions, physical properties, fabrication characteristics, corrosion performance, and general applications of these alloys. A comparison of alloy properties is represented graphically.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006701
EISBN: 978-1-62708-210-5
... . Maximum service temperature is approximately 150 °C (300 °F). Good low-temperature properties make it suitable for use down to −190 °C (−320 °F) in cryogenic applications. Alloy 5254 has excellent resistance to general atmospheric corrosion; it can be used in industrial and seacoast atmospheres without...
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006707
EISBN: 978-1-62708-210-5
... Abstract This article provides an overview of key metallurgy, properties, and applications of the non-heat-treatable 5xxx series of aluminum alloys. It also shows the relationships between some of the more commonly used alloys in the 5xxx series. 5xxx series aluminum alloys datasheets...
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001109
EISBN: 978-1-62708-162-7
... of superconductivity. It discusses the magnetic properties of selected superconductors and types of stabilization, including cryogenic stability, adiabatic stability, and dynamic stability. The article also focuses on alternating current losses in superconductors, including hysteresis loss, penetration loss, eddy...
Abstract
Superconductivity has been found in a wide range of materials, including pure metals, alloys, compounds, oxides, and organic materials. Providing information on the basic principles, this article discusses the theoretical background, types of superconductors, and critical parameters of superconductivity. It discusses the magnetic properties of selected superconductors and types of stabilization, including cryogenic stability, adiabatic stability, and dynamic stability. The article also focuses on alternating current losses in superconductors, including hysteresis loss, penetration loss, eddy current loss, and radio frequency loss. Furthermore, the article describes the flux pinning phenomenon and Josephson effects.
Book: Fractography
Series: ASM Handbook Archive
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000624
EISBN: 978-1-62708-181-8
...-12Ni-0.5Ti alloy intended for use at cryogenic temperatures. The series shows the effect on Charpy impact energy at −196 °C (−321 °F), and on fracture-surface characteristics, of the temperature of aging after austenitizing at 900 °C (1650 °F) for 2 h and air cooling.) Fig. 1208 This SEM...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of miscellaneous metals and alloys and in identifying and interpreting the morphology of fracture surfaces. The metals and alloys covered include tungsten, iridium, magnesium-base, iron-base, molybdenum-base, and tantalum-base materials. The fractographs illustrate fatigue striations, slow-bending fracture, quasi-cleavage fracture, corrosion-fatigue fracture, fatigue crack, intergranular cleavage, microvoid coalescence, tension-overload fracture, crack propagation, impact fracture, and high-cycle fatigue failure.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003305
EISBN: 978-1-62708-176-4
... by explaining the ductile-to-brittle fracture transition and by correlating KId, KIc, and Charpy V-notch impact energy absorptions. It highlights the effects of constraint, temperature, and loading rate on the fracture transition. The article discusses the applications of fracture mechanism in limiting...
Abstract
The fracture-mechanics technology has significantly improved the ability to design safe and reliable structures and identify and quantify the primary parameters that affect structural integrity of materials. This article provides a discussion on fracture toughness of notched materials by explaining the ductile-to-brittle fracture transition and by correlating KId, KIc, and Charpy V-notch impact energy absorptions. It highlights the effects of constraint, temperature, and loading rate on the fracture transition. The article discusses the applications of fracture mechanism in limiting of operating stresses. It describes the mechanisms, testing methods, and effecting parameters of two main categories of fracture mechanics: linear-elastic fracture mechanics and elastic-plastic fracture mechanics. The article concludes with a discussion on the three major progressive stages of fatigue: crack initiation, crack growth, and fracture on the final cycle.
1