1-20 of 221 Search Results for

crucible furnaces

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005899
EISBN: 978-1-62708-167-2
...Abstract Abstract This article provides a detailed discussion on the components of a high-performance induction crucible furnace system, namely, furnace body, power supply, and peripheral components. The furnace body contains refractory lining, coil and transformer yokes, and tilting frame...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005198
EISBN: 978-1-62708-187-0
...Abstract Abstract This article discusses the design parameters, operation, characteristics, properties, and advantages of various types of crucible furnaces, such as stationary, tilting, and movable furnaces. It also provides information on the application of the crucible furnaces...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005900
EISBN: 978-1-62708-167-2
... The electrical principles of VIM furnaces are in full accordance with conventional induction melting furnaces, which are described in the article “Components, Design, and Operation of Induction Crucible Furnaces” in this Volume. The most important difference is the need for high insulation capability...
Image
Published: 01 December 2008
Fig. 5 Stationary crucible furnaces equipped for hand-ladle dip-out pours. (a) Side flue configuration. (b) Configuration with cover plate openings on outside diameter of crucible top More
Image
Published: 01 December 2008
Fig. 1 Large electric bale-out crucible furnace. Courtesy of Morgan Crucible More
Image
Published: 01 December 2008
Fig. 2 Crucible furnace in die casting foundry. Courtesy of Morgan Crucible More
Image
Published: 01 December 2008
Fig. 2 Typical lip-axis tilting crucible furnace used for fuel-fired furnace melting of copper alloys. Similar furnaces are available that tilt on a central axis More
Image
Published: 01 December 2008
Fig. 1 Typical lift-out type of fuel-fired crucible furnace, especially well adapted to foundry melting of smaller quantities of copper alloys (usually less than 140 kg, or 300 lb) More
Image
Published: 01 December 2008
Fig. 3 Typical lift-out version of a stationary crucible furnace specifically adapted to the foundry melting of small quantities (<140 kg, or 300 lb) of copper alloys More
Image
Published: 01 December 2008
Fig. 4 Cross section of a double pushout stationary crucible furnace More
Image
Published: 01 December 2008
Fig. 7 Two variations of a tilting crucible furnace. (a) Center axis. (b) Lip axis More
Image
Published: 31 August 2017
Fig. 10 Induction crucible furnace. (a) Cross section of key components. (b) Electromagnetic force density distribution that results in four-quadrant stirring action, which aids in producing a homogeneous melt. Courtesy of ABP Induction Systems More
Image
Published: 31 August 2017
Fig. 12 Diagram of a large-volume crucible furnace for (a) melting, (b) holding, and (c) combined melting/holding More
Image
Published: 31 August 2017
Fig. 5 Form and velocity of flow in a 50 ton crucible furnace (3500 kW). (a) Single-section coil, 100 Hz. (b) Two-section coil, bottom active, 50 Hz. (c) Two-section coil, top active, 50 Hz. (d) Same as (c) but 100 Hz More
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005905
EISBN: 978-1-62708-167-2
...Abstract Abstract Crucible furnaces, as compared to electric arc furnaces, are increasingly deployed in various melting practices due to their environmental and workplace friendliness and their process benefits. This article focuses on the application of induction crucible furnaces for melting...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005895
EISBN: 978-1-62708-167-2
... furnaces such as induction crucible furnaces, channel induction furnaces, and induction furnaces with cold crucible. The article describes the advantages, applications, and fundamental principles of induction skull melting. It also provides information on the various specific application-designed induction...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005908
EISBN: 978-1-62708-167-2
... of various melting processes and the improvements in the efficiency of melting processes in induction crucible furnaces. It provides energetic and ecological comparisons of different furnaces for melting of cast iron and aluminum. The article also describes the energy and power management of induction...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006337
EISBN: 978-1-62708-179-5
... the advantages of specialized cupolas such as cokeless cupola and plasma-fired cupola. Melting in iron foundries is a major application of induction furnaces. The article describes the operations of two induction furnaces: the channel induction furnace and the induction crucible furnace. It explains the teapot...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005907
EISBN: 978-1-62708-167-2
...Abstract Abstract This article provides an overview of the models of two induction heating devices, namely, induction crucible furnace (ICF) and induction furnace with slits, or segmented and water-cooled induction furnace with cold crucible (IFCC). These devices are used for melting with skull...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005909
EISBN: 978-1-62708-167-2
...Abstract Abstract Melting with induction crucible furnaces (ICFs) is a well-established and reliable technology, and their maintenance must be performed at regularly scheduled intervals to ensure safe operation. This article discusses monitoring of the refractory lining, and presents...