1-20 of 384 Search Results for

creep-strengthening

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 1990
Fig. 34 Schematic of changes in creep strengthening contributions at 550 °C (1020 °F) in (a) normalized molybdenum steel and (b) normalized and tempered molybdenum steel. Source: Ref 57 More
Image
Published: 01 January 2006
Fig. 6 Strengthening mechanisms and their effect on creep strength with time. Source: Ref 11 More
Book Chapter

By Sammy Tin
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005404
EISBN: 978-1-62708-196-2
..., diffusional creep, twinning during creep deformation, and deformation mechanism maps. It discusses the creep-strengthening mechanisms for most structural engineering components. The article provides a description of the microstructural modeling of creep in engineering alloys. creep deformation...
Image
Published: 01 January 2000
Fig. 7 Steady state creep results for a Ni-Cr alloy dispersion strengthened with ThO 2 . Source: Ref 11 More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001035
EISBN: 978-1-62708-161-0
... strengthening and/or grain refinement. The effects of alloy elements on transformation hardening and weldability are, of course, additional factors. The three general types of creep-resistant low-alloy steels are chromium-molybdenum steels, chromium-molybdenum-vanadium steels, and modified chromium...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003287
EISBN: 978-1-62708-176-4
... important cases in which the creep response is quite different. For example, some solid solution strengthened alloys exhibit an inverted primary transient when the interaction between the solute atoms and the gliding dislocations is rate controlling. This observation is illustrated schematically in Fig. 2...
Image
Published: 01 June 2016
Fig. 2 General comparison of creep rupture of conventional nickel-base superalloys. (a) 100 h creep-rupture strength of gamma-prime (γ′) nickel alloys compared to solid-solution and carbide-strengthened alloys. (b) 1000 h creep-rupture strength of some selected nickel superalloys More
Image
Published: 01 January 2000
Fig. 6 Criterion for viscous glide controlled creep and dislocation climb controlled creep in solid solution strengthened alloys. Source: Ref 9 More
Image
Published: 01 January 2000
Fig. 2 Schematic illustrations of the variation of creep strain with time. (a) Behavior exhibited by some solid solution strengthened materials characterized by an inverted primary transient. (b) Behavior of some other materials that combines a normal transient with an inverted transient More
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005133
EISBN: 978-1-62708-186-3
... Abstract Compared to cold-formed parts, age-formed parts have lower residual stresses and consequently better stress corrosion resistance. This article addresses the technical issues that arise in the investigations of creep in precipitate-strengthened materials. The issues addressed help...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002460
EISBN: 978-1-62708-194-8
... conductivities in metals are reduced by them. However, metallic strengths are increased by impurities. This solid solution hardening is used to strengthen a number of metals. Adding zinc to copper, as in brasses, is a technologically important example. Small impurity atoms do not substitute for the host...
Image
Published: 01 December 2009
Fig. 9 (a) The hot-strength of 2 1 4 Cr steel. Fe represents the strength of pure, annealed iron, SS the contribution of solid-solution strengthening, and NN is the total strength estimated using a neural network model. (b) Comparison of temperature-sensitivity of creep-rupture More
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... superalloys 775–925 0.45–0.60 Burner cans for gas turbine engines Oxide dispersion-strengthened nickel-base alloys 1350–1400 0.55–0.65 Constant-load bulk deformation creep curves typically (but not always) consist of three distinct stages ( Fig. 3a ). The first stage (called primary creep...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... 850–950 0.45–0.55 Gas turbine blades Nickel-base superalloys 775–925 0.45–0.60 Burner cans for gas turbine engines Oxide-dispersion-strengthened nickel-base alloys 1350–1400 0.55–0.65 The creep behavior of polymeric materials is more complex, because most plastics respond as true...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001051
EISBN: 978-1-62708-161-0
... treatment applied to DS MAR-M 200 Hf was shown by PWA ( Ref 7 ). It was found that creep strength was a direct function of the volume fraction of solutioned and reprecipitated fine γ′ ( Fig. 3 ). Experimental work by PWA showed that the elimination of grain-boundary strengthening elements (boron, hafnium...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003151
EISBN: 978-1-62708-199-3
.... Dispersions of reactive-metal oxides also are used to improve the elevated-temperature strength and creep resistance of molybdenum. An example is the zirconia-dispersion-strengthened alloy Z-6 (0.5% ZrO 2 ). Tungsten and Tungsten Alloys Tungsten has the highest melting point of any metal (3410 °C...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001467
EISBN: 978-1-62708-173-3
... at temperatures above 980 °C (1800 °F) because carbides and many secondary phases used for strengthening conventional wrought alloys go into solution. The level of creep strength achieved at very high temperatures in ODS alloys has not been matched by similar wrought or cast alloys. The processing techniques...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001422
EISBN: 978-1-62708-173-3
... combination of high strength at temperature; resistance to environmental attack (including nitridation, carbonization, oxidation, and sulfidation), excellent creep resistance, creep rupture strength, toughness, and metallurgical stability; useful thermal expansion characteristics; and resistance to thermal...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006266
EISBN: 978-1-62708-169-6
... comparison of creep rupture of conventional nickel-base superalloys. (a) 100 h creep-rupture strength of gamma-prime (γ′) nickel alloys compared to solid-solution and carbide-strengthened alloys. (b) 1000 h creep-rupture strength of some selected nickel superalloys with the typical range for wrought alloys...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002410
EISBN: 978-1-62708-193-1
... of these strengthening mechanisms is beyond the scope of this article. Instead, they will be discussed only as they pertain to fracture, fatigue, and creep. Precipitation hardening of nickel-base superalloys has been exhaustively studied and has an elegant fundamental basis. For more detailed information...