Skip Nav Destination
Close Modal
Search Results for
creep-rupture properties
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 476 Search Results for
creep-rupture properties
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003289
EISBN: 978-1-62708-176-4
... Abstract This article discusses the methods for assessing creep-rupture properties, particularly, nonclassical creep behavior. The determination of creep-rupture behavior under the conditions of intended service requires extrapolation and/or interpolation of raw data. The article describes...
Abstract
This article discusses the methods for assessing creep-rupture properties, particularly, nonclassical creep behavior. The determination of creep-rupture behavior under the conditions of intended service requires extrapolation and/or interpolation of raw data. The article describes the various techniques employed for data handling of most materials and applications of engineering interest. These techniques include graphical methods, methods using time-temperature parameters, and methods used for estimations when data are sparse or hard to obtain. The article reviews the estimation of required creep-rupture properties based on insufficient data. Methods for evaluation of remaining creep-rupture life, including parametric modeling, isostress testing, accelerated creep testing, evaluation by the Monkman-Grant coordinates, and the Materials Properties Council (MPC) Omega method, are also reviewed.
Image
in Properties of Cast Copper Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Image
in Properties of Cast Copper Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Image
in Properties of Cast Copper Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Image
in Properties of Cast Copper Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Image
in Properties of Magnesium Alloys
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Image
Published: 01 January 1996
Fig. 19 Effect of precipitate morphology on creep-rupture properties. Curve T 1 corresponds to specimens with a heat treatment that produced irregularly shaped precipitates. Curve T 2 corresponds to regular cuboidal precipitates. Source: Ref 24
More
Image
Published: 01 December 2008
Fig. 32 Creep-rupture properties of alloy HK40. Scatter bands are ±20% of the central tendency line. Although such a range usually encompasses data for similar alloy compositions, scatter of values may be much higher, especially at longer times and high temperatures.
More
Image
in Elevated-Temperature Properties of Stainless Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 25 Short-time tensile, rupture, and creep properties of precipitation-hardening stainless steels. AM-355 was finish hot worked from a maximum temperature of 980 °C (1800 °F), reheated to 930 to 955 °C (1710 to 1750 °F), water quenched, treated at −75 °C (−100 °F), and aged at 540 and 455
More
Image
Published: 01 January 2000
Fig. 17 Short-time tensile, rupture, and creep properties of precipitation-hardening stainless steels Alloy Heat treatment AM 355 Finish hot worked from a maximum temperature of 980 °C (1800 °F), reheated to 932–954 °C (1710–1750 °F), water quenched, treated at −73 °C (−100 °F
More
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006616
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on composition limits, key metallurgy, fabrication characteristics, processing effects on physical, tensile, and creep-rupture properties, and applications of Al-Cu-Mg-Ni alloys 2618 and 2618A. The influence of prolonged holding at elevated...
Abstract
This datasheet provides information on composition limits, key metallurgy, fabrication characteristics, processing effects on physical, tensile, and creep-rupture properties, and applications of Al-Cu-Mg-Ni alloys 2618 and 2618A. The influence of prolonged holding at elevated temperature on tensile properties and the influence of temperature on compressive yield strength of alloy 2618-T61 hand-forged billets are illustrated.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003286
EISBN: 978-1-62708-176-4
... interpretation methods. The article “Assessment and Use of Creep-Rupture Properties” covers methods for accurately assessing creep rupture properties. These methods include established interpolation and extrapolation procedures and properties-estimation schemes when data is sparse. The methods presented...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003128
EISBN: 978-1-62708-199-3
... and elevated-temperature aluminum casting alloys. It provides a list of the creep-rupture properties and fatigue strengths of separately sand cast test bars of alloy 201.0, alloy C355.0-T61, alloy A356.0-T61, and alloy 354.0-T61. alloy 201.0 alloy 354.0-T61 alloy A356.0-T61 alloy C355.0-T61 aluminum...
Abstract
This article is a comprehensive collection of tables and curves that present data on the properties of aluminum castings. Data are presented to explain the physical properties such as ratings of castability, corrosion resistance, machinablity, and weldability for aluminum casting alloys. The article discusses the typical mechanical properties and mechanical-property limits for aluminum sand casting alloys, permanent mold casting and die casting alloys based on tests of separately cast specimens; and typical mechanical properties of premium-quality aluminum alloy castings and elevated-temperature aluminum casting alloys. It provides a list of the creep-rupture properties and fatigue strengths of separately sand cast test bars of alloy 201.0, alloy C355.0-T61, alloy A356.0-T61, and alloy 354.0-T61.
Image
Published: 01 December 1998
Fig. 8 Larson-Miller parameter ( P ) plot showing the effect of processing on the creep-rupture properties of IC-221. Tests were conducted in the temperature range of 650 to 870 °C (1200 to 1600 °F) for times ranging from 10 to 12,464 h.
More
Image
in Ordered Intermetallics
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 9 Larson-Miller parameter ( P ) plot showing the effect of processing on the creep-rupture properties of lC-221 (Ni-16.1Al-8Cr-1Zr-0.8B, at.%). Tests were conducted in the temperature range of 650 to 870 °C (1200 to 1600 °F) for times ranging from 10 to 12 464 h. Source: Ref 84
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002387
EISBN: 978-1-62708-193-1
... Abstract This article focuses on the subject of proactive or predictive maintenance with particular emphasis on the control and prediction of corrosion damage for life extension and failure prevention. It discusses creep life assessment from the perspective of creep-rupture properties...
Abstract
This article focuses on the subject of proactive or predictive maintenance with particular emphasis on the control and prediction of corrosion damage for life extension and failure prevention. It discusses creep life assessment from the perspective of creep-rupture properties and creepcrack growth. Practical methods based on replication and parametric approaches are also discussed.
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
...-operating conditions with available data on creep, stress-rupture, tension, elevated-temperature fatigue, and thermal fatigue properties. Such an analysis is usually sufficient for most failure investigations, but a more thorough analysis may be required when stress, time, temperature, and environment have...
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006554
EISBN: 978-1-62708-210-5
... of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties. aluminum alloys bearing...
Abstract
Understanding the mechanical properties of aluminum alloys is useful for the designer for choosing the best alloy and establishing appropriate allowable stress values, and for the aluminum producer to control the fabrication processes. This article discusses the nature and significance of mechanical property data and of stress-strain curves detailing the effects of mechanical properties on the design and selection of aluminum alloys. The properties include tensile, compressive, shear, bearing, creep and creep-rupture, fatigue, and fracture resistance properties.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006690
EISBN: 978-1-62708-210-5
... and cantilever-beam tests at elevated temperatures Creep-rupture properties of alloy 4032 Table 6 Creep-rupture properties of alloy 4032 Temperature Time under stress, h Rupture stress Creep stress, % 1.0 0.5 0.2 °C °F MPa ksi MPa ksi MPa ksi MPa ksi 100 212 0.1 331 48...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... with available data on creep, stress-rupture, tension, elevated-temperature fatigue, and thermal fatigue properties. Such an analysis is usually sufficient for most failure investigations, but a more thorough analysis can be required when stress, time, temperature, and environment have changed the metallurgical...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
1