Skip Nav Destination
Close Modal
Search Results for
creep-rupture failure
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 391 Search Results for
creep-rupture failure
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... Abstract This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep...
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... Abstract The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006921
EISBN: 978-1-62708-395-9
... in transparency Creep-rupture from constant load (creep) Odor development Chemical or environmental stress cracking (ESC) Loss of adhesion Loss of mechanical seal (stress-relaxation) Shrinkage/warpage Cracking from cyclic loading (fatigue) Once the type of failure needing to be assessed...
Abstract
The lifetime assessment of polymeric products is complicated, and if the methodology utilized leads to inaccurate predictions, the mistakes could lead to financial loss as well as potential loss of life, depending on the service application of the product. This article provides information on the common aging mechanisms of polymeric materials and the common accelerated testing methods used to obtain relevant data that are used with the prediction models that enable service life assessment. Beginning with a discussion of what constitutes a product failure, this article then reviews four of the eight major aging mechanisms, namely environmental stress cracking, chemical degradation, creep, and fatigue, as well as the methods used in product service lifetime assessment for them. Later, several methods of service lifetime prediction that have gained industry-wide acceptance, namely the hydrostatic design basis approach, Miner's rule, the Arrhenius model, and the Paris Law for fatigue crack propagation, are discussed.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... are often conducted on time-dependent failure mechanisms. The principal types of elevated-temperature failures are stress rupture, creep, low- or high-cycle fatigue, thermal fatigue, and coating degradation in gas turbines. For high-temperature tubing and piping components, embrittlement phenomena can occur...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002472
EISBN: 978-1-62708-194-8
... on the apparent activation energy is also to be expected. Fracture at Elevated Temperatures As indicated previously, the constant load creep rupture test is the basis for design data for both creep strength (minimum creep rate or time to a specific creep strain) and failure (time to rupture). The various...
Abstract
This article reviews the basic mechanisms of elevated-temperature behavior and associated design considerations, with an emphasis on metals. It discusses the key concepts of elevated-temperature design. These include plastic instability at elevated temperatures; deformation mechanisms and strain components associated with creep processes; stress and temperature dependence; fracture at elevated temperatures; and environmental effects. The article describes the basic presentation and analysis methods for creep rupture. It provides information on the application of these methods to materials selection and the setting of basic design rules. The article examines the limitations of high-temperature components as well as the alternative design approaches and tests for most high-temperature components.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... in.) As stated earlier in this article, the uniaxial creep test may generate deformation data and/or rupture data. Historically, rupture data have been more prevalent than deformation data, because measuring the time to failure requires less sophisticated instrumentation than measuring deflection over time...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Image
in Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 1 Typical short-term overheating and long-term creep failures. (a) Typical thin-lip, short-term overheating failure of a 9.5 cm (3.75 in.) outside diam by 8.7 mm ( 11 32 in.) wall tube. Scaling caused the 13 cm (5 in.) knife-edge rupture. (b) Typical thick-lip, long-term creep
More
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003289
EISBN: 978-1-62708-176-4
... of each individual test by examining its fit within the scatter band for all tests. Once a minimum creep rate has been determined in a low-stress test, rupture life can be estimated without running the test to failure. Although Monkman and Grant stated that this relationship was not intended...
Abstract
This article discusses the methods for assessing creep-rupture properties, particularly, nonclassical creep behavior. The determination of creep-rupture behavior under the conditions of intended service requires extrapolation and/or interpolation of raw data. The article describes the various techniques employed for data handling of most materials and applications of engineering interest. These techniques include graphical methods, methods using time-temperature parameters, and methods used for estimations when data are sparse or hard to obtain. The article reviews the estimation of required creep-rupture properties based on insufficient data. Methods for evaluation of remaining creep-rupture life, including parametric modeling, isostress testing, accelerated creep testing, evaluation by the Monkman-Grant coordinates, and the Materials Properties Council (MPC) Omega method, are also reviewed.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003291
EISBN: 978-1-62708-176-4
..., both in the low and high temperature ranges. It has been found to govern the deformation of materials under complex loading situations. It is also the controlling parameter for creep rupture at high stresses where the rupture is associated with large deformations and a ductile failure mechanism...
Abstract
This article presents effective stress equations that are based on the von Mises criterion, the Tresca criterion, and the Huddleston criterion. It describes the calculation of effective stresses for different cases: elastic stresses, steady-state creep stresses, stresses in a fully plastic case, and thermal stresses in a tube. The article illustrates the comparison of life predictions by the stress criteria and presents a simple mean diameter hoop stress equation, which is used for designing components. It also provides information on the multiaxial creep ductility of tubular components and multiaxial testing methods.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001352
EISBN: 978-1-62708-173-3
... in longer tensile creep-rupture times. Time-dependent failure is believed to be a consequence of cavity nucleation and/or growth ( Ref 33 ), as is observed in short-term tensile tests that determine the UTS. For solid-state welds in which two coatings are joined, nucleation occurs principally at the silver...
Abstract
Soft-interlayer solid-state welds that join stronger base metals have unique mechanical properties that are of fundamental interest and may be of critical importance to designers. This article discusses the mechanical properties of soft-interlayer solid-state welds and the implications of these behaviors to service stress states and environments. It describes the tensile loading of soft-Interlayer welds in terms of the effect of interlayer thickness on stress, interlayer strain, time-dependent failure, effect of base-metal properties, and effect of interlayer fabrication method. The article concludes with a discussion on multiaxial loading.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005556
EISBN: 978-1-62708-174-0
... with increased times-to-rupture, as indicated in Fig. 4 . This figure shows that decreasing the t / d ratio (to about 0.02) and/or improving the base-metal surface finish (lapping) results in longer tensile creep-rupture times. Time-dependent failure is believed to be a consequence of cavity nucleation...
Abstract
This article discusses the mechanical properties of soft-interlayer solid-state welds and the implications of these behaviors to service stress states and environments. It illustrates the microstructure of as-deposited coatings and solid-state-welded interlayers. The article reviews factors that affect the tensile loading of strength of soft-interlayer welds: the interlayer thickness, the interlayer strain, and the interlayer fabrication method. It also provides information on stress-corrosion cracking of interlayers and stress behavior of these interlayers during shear and multiaxial loading.
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006867
EISBN: 978-1-62708-395-9
... such as polyethylene that normally fails in a highly ductile manner. These effects are summarized in the schematic creep rupture curves of Fig. 1 . High density polyethylene exhibits ductile failure (elongations to break of several hundred percent) at stresses near its reported yield stress. At lower stresses...
Abstract
With any polymeric material, chemical exposure may have one or more different effects. Some chemicals act as plasticizers, changing the polymer from one that is hard, stiff, and brittle to one which is softer, more flexible, and sometimes tougher. Often these chemicals can dissolve the polymer if they are present in large enough quantity and if the polymer is not crosslinked. Other chemicals can induce environmental stress cracking (ESC), an effect in which brittle fracture of a polymer will occur at a level of stress well below that required to cause failure in the absence of the ESC reagent. Finally, there are some chemicals that cause actual degradation of the polymer, breaking the macromolecular chains, reducing molecular weight, and diminishing polymer properties as a result. This article examines each of these effects. The discussion also covers the effects of surface embrittlement and temperature on polymer performance.
Image
in Elevated-Temperature Properties of Stainless Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 34 Comparison of linear damage rule of creep-fatigue interaction with design envelopes in ASME Code Case N-47 for 304 and 316 stainless steel. Creep-damage fraction = time/time-to-rupture (multiplied by a safety factor). Fatigue-damage fraction = number of cycles/cycles to failures
More
Image
Published: 01 December 2009
Fig. 9 (a) The hot-strength of 2 1 4 Cr steel. Fe represents the strength of pure, annealed iron, SS the contribution of solid-solution strengthening, and NN is the total strength estimated using a neural network model. (b) Comparison of temperature-sensitivity of creep-rupture
More
Series: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006934
EISBN: 978-1-62708-395-9
... method, one of the most common to describe the material deformation and rupture time, is also discussed. Burgers power-law model creep failure Findley power-law model Larson-Miller parametric method material deformation polymers rupture time service life stress relaxation time-stress...
Abstract
This article describes the general aspects of creep, stress relaxation, and yielding for homogeneous polymers. It then presents creep failure mechanisms in polymers. The article discusses extrapolative methods for the prediction of long-term creep failure in polymer materials. Then, the widely used models to simulate the service life of polymers are highlighted. These include the Burgers power-law model, the Findley power-law model, the time-temperature superposition (or equivalence) principle (TTSP), and the time-stress superposition principle (TSSP). The Larson-Miller parametric method, one of the most common to describe the material deformation and rupture time, is also discussed.
Book Chapter
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003288
EISBN: 978-1-62708-176-4
... Abstract This article reviews the basic equipment and methods for creep and creep rupture testing. It begins with a discussion on the creep properties, including stress and temperature dependence, as well as of the extrapolation techniques that permit estimation of the long-term creep...
Abstract
This article reviews the basic equipment and methods for creep and creep rupture testing. It begins with a discussion on the creep properties, including stress and temperature dependence, as well as of the extrapolation techniques that permit estimation of the long-term creep and rupture strengths of materials. The article describes the different types of equipment for determination of creep characteristics, including test stands, furnaces, and extensometers. It also discusses the different testing methods for creep rupture: constant-load testing and constant-stress testing. The article presents other testing considerations and concludes with information on stress relaxation testing.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003024
EISBN: 978-1-62708-200-6
... of creep rupture may not occur within the service life of the product (let alone the test). As the stress level increases, first- and second-stage creep deformation rates remain relatively the same for these types, but the time of failure is of course considerably reduced. In addition, third-stage creep...
Abstract
This article discusses the deformation and viscoelastic characteristics of plastics as polymeric materials, focusing on the test methods used for the evaluation of their mechanical properties, methods available for analytically predicting the deformation response of polymers, and the effect of viscoelasticity on the test methods used. Two common ways of evaluating viscoelasticity of plastics are by means of creep experiments and dynamic mechanical experiments. Graphic or tabular analysis of test data, time-temperature superposition, and empirical correlation methods are commonly employed for analytical prediction of deformation characteristics of polymers.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003550
EISBN: 978-1-62708-180-1
... in a highly ductile manner. These effects are summarized in the schematic creep rupture curves of Fig. 1 . High density polyethylene exhibits ductile failure (elongations to break of several hundred percent) at stresses near to its reported yield stress. At lower stresses and longer failure times...
Abstract
The article commences with an overview of short-term and long-term mechanical properties of polymeric materials. It discusses plasticization, solvation, and swelling in rubber products. The article further describes environmental stress cracking and degradation of polymers. It illustrates how surface degradation of a plain strain tension specimen alters the ductile brittle transition in polyethylene creep rupture. The article concludes with information on the effects of temperature on polymer performance.
Book Chapter
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001035
EISBN: 978-1-62708-161-0
... strength, was developed. Unfortunately, this development had overlooked the importance of rupture ductility, and many creep-rupture failures of bolts due to notch sensitivity occurred. The loss in rupture ductility was subsequently countered by grain refinement and by compositional modifications involving...
Abstract
This article discusses some elevated-temperature properties of carbon steels and low-alloy steels with ferrite-pearlite and ferrite-bainite microstructures for use in boiler tubes, pressure vessels, and steam turbines. The selection of steels to be used at elevated temperatures generally involves compromise between the higher efficiencies obtained at higher operating temperatures and the cost of equipment, including materials, fabrication, replacement, and downtime costs. The article considers the low-alloy steels which are the creep-resistant steels with 0.5 to 1.0% Mo combined with 0.5 to 9.0% Cr and perhaps other carbide formers. The factors affecting mechanical properties of steels include the nature of strengthening mechanisms, the microstructure, the heat treatment, and the alloy composition. The article describes these factors, with particular emphasis on chromium-molybdenum steels used for elevated-temperature service. Although the mechanical properties establish the allowable design-stress levels, corrosion effects at elevated temperatures often set the maximum allowable service temperature of an alloy. The article also discusses the effects of alloying elements in annealed, normalized and tempered, and quenched and tempered steels.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
... exceeded the strength of the part Possible wrong material (check for proper alloy and processing by hardness check or destructive testing, chemical analysis) Loading direction may show failure was secondary Short-term, high-temperature, high-stress rupture has ductile appearance (see creep...
Abstract
The principal task of a failure analyst during a physical-cause investigation is to identify the sequence of events involved in the failure. Technical skills and tools are required for such identification, but the analyst also needs a mental organizational framework that helps evaluate the significance of observations. This article discusses the processes involved in the characterization and identification of damage and damage mechanisms. It describes the relationships between damage causes, mechanisms, and modes with examples. In addition, some of the more prevalent and encompassing characterization approaches and categorization methods of damage mechanism are also covered.