1-20 of 417

Search Results for creep-fatigue interaction

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 1990
Fig. 34 Comparison of linear damage rule of creep-fatigue interaction with design envelopes in ASME Code Case N-47 for 304 and 316 stainless steel. Creep-damage fraction = time/time-to-rupture (multiplied by a safety factor). Fatigue-damage fraction = number of cycles/cycles to failures More
Image
Published: 01 January 2000
Fig. 29 Creep-fatigue interaction effects on isothermal cyclic life of AISI type 304 stainless steel tested in air at 650 °C (1200 °F), normal straining rate of 4 × 10 −3 s −1 . After Ref 65 More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
.... The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures. aging carbide...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003314
EISBN: 978-1-62708-176-4
... load cells extensometry strain measuring devices environmental chambers graphic recorders furnaces heating systems baseline isothermal fatigue testing creep-fatigue interaction thermomechanical fatigue fatigue resistance Fatigue closed loop control advanced software tools fatigue life...
Image
Published: 01 January 1990
Fig. 33 Design fatigue-strain range curves for 340 and 316 stainless steel. (a) Design curves with continuous cycling (pure fatigue). (b) Design curves with hold times (creep-fatigue interaction) More
Image
Published: 01 January 1996
Fig. 33 Design fatigue-strain range curves for 304 and 316 stainless steel. (a) Design curves with continuous cycling (pure fatigue). (b) Design curves with hold times (creep-fatigue interaction) More
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001035
EISBN: 978-1-62708-161-0
... an important factor that influences notch sensitivity and creep-fatigue interaction. The types of tests used to evaluate the mechanical properties of steels at elevated temperatures include: Short-term elevated-temperature tests Long-term elevated-temperature tests Fatigue tests (including...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001048
EISBN: 978-1-62708-161-0
.... For temperatures above 480 °C (900 °F), the design process must include other properties such as creep rate, creep-rupture strength, creep-rupture ductility, and creep-fatigue interaction. Mechanical data of various steels at elevated temperatures are available in the ASTM data series (DS) listed in Table 2...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003307
EISBN: 978-1-62708-176-4
... propagation mechanisms ( Ref 3 ). Therefore, the interaction of creep and fatigue damage is an important concern in structural life assessments. There is also an increasing demand to develop methods of increasing the service life of existing systems, as well as to develop more accurate techniques...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002389
EISBN: 978-1-62708-193-1
... experienced by components can also involve cyclic loading and unloading at elevated temperatures. Hence, in these situations, crack growth occurs not only under static loading (creep conditions), but creep-fatigue interactions play a major role in the initiation and growth of cracks. Components operating...
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002472
EISBN: 978-1-62708-194-8
... analysis will be confined to presenting data in the form that a designer might use, with emphasis on design principles rather than detailed design analysis. Thus, multiaxial stresses, part analysis, and creep-fatigue interaction are not formally treated. However, remaining life assessment and the effect...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002413
EISBN: 978-1-62708-193-1
... and Attarwala ( Ref 23 ). All the experimental data suggest that the continuously evolving internal structure has a critical influence on the behavior of solders, especially when fatigue load conditions are applied. A fatigue model of solders, if predictive, should incorporate the overall creep behavior...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003225
EISBN: 978-1-62708-199-3
... effects could be evident at elevated temperatures, and material instabilities ocassionally can contribute to the response. Creep fatigue interactions also can alter an assumed “simple” fatigue situation to a considerable degree. Fig. 18 Low-cycle fatigue curves for superalloys at 850 °C (1560 °F...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005411
EISBN: 978-1-62708-196-2
... THERE ARE NUMEROUS APPLICATIONS in the modern engineering world that involve the use of metals under conditions of cyclic loading in operating conditions that can cause creep and/or environmental interactions with time-independent, mechanical fatigue processes. The interrelationships between the various damage...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
... changes, which thus impose fatigue damage. In this case, it is customary to consider each flight to be one fatigue cycle with an imposed hold time, so in addition to creep and fatigue acting independently, there are creep-fatigue interactions (which are also influenced to a very significant degree...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002391
EISBN: 978-1-62708-193-1
... in the TMF OP case was nearly a factor of five, whereas in the TMF IP case the lives were not significantly influenced. The results are shown in Fig. 13 . Under conditions where creep mechanisms are dominant compared to environmental interaction effects, the fatigue life in air is about the same...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002410
EISBN: 978-1-62708-193-1
... to maximum and back to zero. For some military engines, thrust settings are varied so greatly that they can also be considered as a fatigue cycle. Turbine components thus experience thermomechanical loading and fatigue as well as creep-fatigue interactions. The good combination of strength and toughness...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003521
EISBN: 978-1-62708-180-1
... is not necessarily complete because it does not point to the specific environment that results in a fatigue damage mode. Instead, specific mechanisms that can result in a fatigue damage mode have to be examined. Examples include corrosion fatigue, thermomechanical fatigue, creep-fatigue interaction, and mechanical...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
... mechanisms that can result in a fatigue damage mode must be examined. Examples include corrosion fatigue, thermomechanical fatigue, vibrationally induced fatigue, creep-fatigue interaction, and fatigue induced only by mechanical cyclic stresses. Determination of damage mechanisms starts by characterizing...