1-20 of 369 Search Results for

creep-fatigue crack growth testing

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003307
EISBN: 978-1-62708-176-4
... Abstract Predicting the service life of structural components involves creep-fatigue crack growth (CFCG) testing under pure creep conditions. This article provides a discussion on the loading condition and the type of ductile and brittle material showing creep behavior. It focuses on a...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002360
EISBN: 978-1-62708-193-1
... Abstract This article describes the fracture mechanics in fatigue. It discusses the fatigue crack growth rate (FCGR) testing that consists of several steps, beginning with selecting the specimen size, geometry, and crack length measurement technique. The two major aspects of FCGR test analysis...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003317
EISBN: 978-1-62708-176-4
... servohydraulic systems to control. Ramp waveforms should be used when elevated-temperature FCGR and creep-fatigue interaction are of interest (see appendix to this article, “High-Temperature Fatigue Crack Growth Testing” ) or when testing in aqueous environments ( Ref 32 ). Five types of FCGR tests are used...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003314
EISBN: 978-1-62708-176-4
...” and “Creep Crack Growth Testing” in this Volume. Microscopic-sized fatigue cracks tend to nucleate quite early in cyclic life (in the first 1–10%) in the high-strain, plasticity-dominated, low-cycle life regime. In this regime, cyclic plasticity is widespread throughout the specimen test section...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002389
EISBN: 978-1-62708-193-1
... Abstract This article describes the concepts for characterizing and predicting elevated-temperature crack growth in structural materials. It discusses both creep and creep-fatigue crack growth and focuses mainly on creep crack growth tests that are carried out in accordance with ASTM E 1457...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003309
EISBN: 978-1-62708-176-4
... article briefly describes the typical test methods for the evaluation of hydrogen embrittlement, stress-corrosion cracking, and corrosion fatigue with an emphasis on fracture mechanics methodologies for metals. A brief overview on the environmentally assisted crack growth of nonmetallic materials is also...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002352
EISBN: 978-1-62708-193-1
... service load. The final fracture is usually abrupt, but it is generally preceded by a cracking process that occurs slowly over the service life from various crack growth mechanisms (e.g., see Fig. 1 ) such as fatigue, stress-corrosion cracking, creep, and hydrogen-induced cracking. Each of these cracking...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005411
EISBN: 978-1-62708-196-2
... affected the oxide growth on the exposed fatigue fracture surfaces in air at 427 to 649 °C for alloy 718. Elevated-temperature creep and fatigue tests in air or in an oxygen partial pressure environment of nickel-base superalloys have been shown to increase the crack growth rate ( Ref 17 , 25 , 26...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002357
EISBN: 978-1-62708-193-1
... , p 92 – 99 94. Ohji K. , Kubo S. , and Nakai Y. , Near-Threshold Fatigue Crack Growth Behavior at High Temperatures , Creep: Characterization, Damage and Life Assessments , ASM International , 1992 , p 379 – 388 95. Makhlouf K. and Jones J.W. , Near...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... Abstract This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress...
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005737
EISBN: 978-1-62708-171-9
.... Creep can be a problem, which is why new alloys and processing techniques have resulted in the development of single-crystal and directionally solidified alloys. Past experience has shown that hot corrosion is a problem for some of these blades. This is due to dirty fuels that contain sulfur, sodium...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002355
EISBN: 978-1-62708-193-1
... Abstract This article presents an overview of fatigue crack nucleation from the point of view of the material microstructure and its evolution during cycling. It describes the sites of microcrack nucleation at the free surfaces. The article discusses the relation of dislocation structures and...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002362
EISBN: 978-1-62708-193-1
... specimen temperature. Variables that can affect fatigue crack growth rate at high temperature are time and rate dependent or structure dependent. Examples of time- and rate-dependent variables are oxidation and creep ( Fig. 21 ). Structure-dependent variables include phase transformations, nucleation and...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003328
EISBN: 978-1-62708-176-4
... Test configuration for evaluating long-term creep failure behavior of pipe elbows. F 0 , external static force; R , pipe elbow radius; L , length of the straight ends of the elbow During all the tests, the variation with time of internal pressure, bending moment, crack opening displacement...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003257
EISBN: 978-1-62708-176-4
..., tensile, compressive, hardness, torsion and bend, shear load, shock, and fatigue and creep testings. It describes the design criteria for combined properties derived from each of the mechanical testing. The article concludes with a discussion on the effect of environment on the mechanical properties...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003318
EISBN: 978-1-62708-176-4
... fracture toughness, and the first term is the elastic contribution, which includes an elastic compliance term, C 1 . The second term is the time-dependent contribution, which includes a creep compliance term, C 2 , and the test frequency, ν. Strain rate can also play a critical role in the fatigue...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003243
EISBN: 978-1-62708-199-3
... used in creep-testing machines are more practical. The primary advantage of any dead-weight loading device is the constancy of the applied load. Constant-strain SCC tests are performed in low-compliance tension-testing machines. The specimen is loaded to the required stress level, and the moving...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003312
EISBN: 978-1-62708-176-4
... include temperature control, environmental effects (both material and test apparatuses), and time-dependent behavior (e.g., creep or oxidation). In fracture testing, a particularly troubling complication is the effect of material and/or environmental interactions on the crack-tip conditions. A good...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003316
EISBN: 978-1-62708-176-4
... reviewed. fretting fretting fatigue cracks fatigue limit nonfretted specimens stress analysis fretting fatigue modelling fretting fatigue testing fretting prevention surface stress wear resistance FRETTING is a special wear process that occurs at the contact area between two materials...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003330
EISBN: 978-1-62708-176-4
... fracture modes, namely, crack opening mode, shearing mode, and tearing mode. It presents an overview of fatigue testing and fatigue damage mechanisms of composite materials and reviews the types of mechanical measurements that can be made during the course of testing to assess fatigue damage. The article...