1-20 of 450 Search Results for

creep-fatigue crack growth

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 2002
Fig. 39 (a) Comparison of creep-fatigue crack growth rates with fatigue crack growth plotted as a function of Δ K . (b) The effect of hold time estimated for engineering structures when the creep crack growth rate is plotted as a function of ( C t ) avg More
Image
Published: 01 January 1996
Fig. 18 Comparison between creep and creep-fatigue crack growth data in terms of the estimated ( C t )avg for 1.25Cr-0.5Mo steel at 538 °C (1000 °F). Source: Ref 59 , 60 More
Image
Published: 01 January 1996
Fig. 7 Typical loading waveforms used during creep-fatigue crack growth testing. Source: Ref 66 More
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002389
EISBN: 978-1-62708-193-1
... Abstract This article describes the concepts for characterizing and predicting elevated-temperature crack growth in structural materials. It discusses both creep and creep-fatigue crack growth and focuses mainly on creep crack growth tests that are carried out in accordance with ASTM E 1457...
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003307
EISBN: 978-1-62708-176-4
... Abstract Predicting the service life of structural components involves creep-fatigue crack growth (CFCG) testing under pure creep conditions. This article provides a discussion on the loading condition and the type of ductile and brittle material showing creep behavior. It focuses...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002410
EISBN: 978-1-62708-193-1
... are summarized. The article also discusses the effects of microstructure and extrinsic parameters on fatigue crack propagation (FCP). It details the modeling of FCP rates and creep and creep-fatigue crack growth rates. creep creep-fatigue crack growth rate fatigue fatigue crack propagation fracture...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005411
EISBN: 978-1-62708-196-2
... for suring structural integrity of elevated-temperature components. The importance of the role of crack growth models that apply to creep-fatigue-environment conditions while also accounting for microstructural changes is apparent. If more accurate crack growth models were available, Fig. 1 illustrates how...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001477
EISBN: 978-1-62708-173-3
..., the initiation criteria must be combined with crack-growth data to perform a fracture mechanics analysis of remaining life. Fatigue crack-growth analysis procedures are well established. However, for creep crack growth and creep-fatigue crack growth, the methodologies and data needed for analysis have emerged...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... fraction rule Parameter-based assessments Thermal-mechanical fatigue (TMF) Coating evaluations Hardness testing Microstructural evaluations Creep cavitation damage assessment Oxide-scale-based life prediction High-temperature crack growth methods Definition of Damage, Life...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002390
EISBN: 978-1-62708-193-1
...:  Cavitation measurement  Carbide-coarsening measurements  Lattice parameter  Ferrite chemistry analysis  Hardness monitoring Quantitative relationships with remaining life are lacking Issues:Uncertainties in interpretation of NDE results Lack of adequate crack growth data in creep and creep-fatigue Lack...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003225
EISBN: 978-1-62708-199-3
... is provided in Table 1 . Fracture mode identification chart Table 1 Fracture mode identification chart Method Instantaneous failure mode (a) Progressive failure mode (b) Ductile overload Brittle overload Fatigue Corrosion Wear Creep Visual, 1 to 50× (fracture surface) Necking...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... in the component. In these cases, most of the life of the component is spent in crack growth. This involves assessment of fracture resistance rather than a strength assessment based on bulk creep rates and time to stress rupture. Therefore, creep life assessment may involve evaluation of both creep strength (i.e...
Image
Published: 01 January 1996
Fig. 17 Correlation of measured crack growth rates with the C t calculated from experimental measurements ( Ref 61 ) for 2.25Cr-1.0Mo steel at 594 °C (1100 °F). (Note da / dt versus C t plotted for the creep crack growth data and ( da / dt ) avg with ( C t ) avg for the creep More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
...) are less ductile and can have creep crack growth that depends on the crack tip stress field. In these cases, the creep crack growth rate ( da / dt ) follows the conventional fatigue crack growth rate and can be correlated with K , the stress-intensity factor, with a power-law dependence as: d a / d...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002391
EISBN: 978-1-62708-193-1
...” fatigue damage, including high-temperature creep and oxidation, which directly contribute to damage. These mechanisms differ, depending on the strain-temperature history. They are different from those predicted by creep tests (with no reversals) and by stress-free (or constant-stress) oxidation tests...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003546
EISBN: 978-1-62708-180-1
..., creep-fatigue crack initiation and crack growth are the dominant damage mechanisms. Cracks have been found to occur in casings that have been removed from service after being in operation for 25 years or longer ( Ref 12 ). Thus, to ensure the integrity of the casings, it is necessary to inspect them...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
.... The metal temperature during steady-state operation is approximately 538 °C (1000 °F), which is in the creep regime; therefore, creep-fatigue crack initiation and crack growth are the dominant damage mechanisms. Cracks have been found to occur in casings that have been removed from service after being...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000630
EISBN: 978-1-62708-181-8
... have been aluminum oxide. SEM, 1300× (N. Brown, University of Pennsylvania) Fig. 1320 Fig. 1321 Fig. 1322 Tearing and fibrillation in medium-density polyethylene tested in creep at room temperature. Arrow indicates direction of crack propagation. Fracture stress (σ f ) = 15.5 MPa...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002403
EISBN: 978-1-62708-193-1
... embrittlement. It also describes the effect of environment on fatigue crack growth rate. austenitic stainless steel corrosion fatigue duplex stainless steel embrittlement fatigue crack growth rate fatigue endurance limits ferritic stainless steel fracture properties martensitic stainless steel...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001831
EISBN: 978-1-62708-181-8
...-corrosion cracking (SCC). Decohesive rupture resulting from creep fracture mechanisms is discussed at the end of this section. The fracture of weak grain-boundary films (such as those resulting from grain-boundary penetration by low melting point metals), the rupture of melted and resolidified grain...