Skip Nav Destination
Close Modal
Search Results for
creep rupture
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 109 Search Results for
creep rupture
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005404
EISBN: 978-1-62708-196-2
... creep rupture. Coupling of all of these rate expressions into the CDM model allows for both the prediction of the creep response as well as the evolution of the microstructure during deformation. This is an extremely useful model that has been successfully applied to simulate the deformation response of...
Abstract
This article, to develop an understanding of the underlying mechanisms governing deformation at elevated temperatures, discusses the phenomenological effects resulting from temperature-induced thermodynamic and kinetic changes. It describes the deformation behavior of engineering materials using expressions known as constitutive equations that relate the dependence of stress, temperature, and microstructure on deformation. The article reviews the characteristics of creep deformation and mechanisms of creep, such as power-law creep, low temperature creep, power-law breakdown, diffusional creep, twinning during creep deformation, and deformation mechanism maps. It discusses the creep-strengthening mechanisms for most structural engineering components. The article provides a description of the microstructural modeling of creep in engineering alloys.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005411
EISBN: 978-1-62708-196-2
... Abstract The overarching goal of life-prediction research is to develop models for the various types of time dependencies in the crack-tip damage accumulation that occur in materials subjected to elevated temperatures. This article focuses on describing the models based on creep, oxidation...
Abstract
The overarching goal of life-prediction research is to develop models for the various types of time dependencies in the crack-tip damage accumulation that occur in materials subjected to elevated temperatures. This article focuses on describing the models based on creep, oxidation kinetics, evolution of crack-tip stress fields due to creep, oxygen ingress, and change in the microstructure. It also provides a summary of creep-fatigue modeling approaches.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003128
EISBN: 978-1-62708-199-3
... elevated-temperature aluminum casting alloys. It provides a list of the creep-rupture properties and fatigue strengths of separately sand cast test bars of alloy 201.0, alloy C355.0-T61, alloy A356.0-T61, and alloy 354.0-T61. alloy 201.0 alloy 354.0-T61 alloy A356.0-T61 alloy C355.0-T61 aluminum...
Abstract
This article is a comprehensive collection of tables and curves that present data on the properties of aluminum castings. Data are presented to explain the physical properties such as ratings of castability, corrosion resistance, machinablity, and weldability for aluminum casting alloys. The article discusses the typical mechanical properties and mechanical-property limits for aluminum sand casting alloys, permanent mold casting and die casting alloys based on tests of separately cast specimens; and typical mechanical properties of premium-quality aluminum alloy castings and elevated-temperature aluminum casting alloys. It provides a list of the creep-rupture properties and fatigue strengths of separately sand cast test bars of alloy 201.0, alloy C355.0-T61, alloy A356.0-T61, and alloy 354.0-T61.
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001831
EISBN: 978-1-62708-181-8
...). Decohesive rupture resulting from creep fracture mechanisms is discussed at the end of this section. The fracture of weak grain-boundary films (such as those resulting from grain-boundary penetration by low melting point metals), the rupture of melted and resolidified grain-boundary constituents (as in...
Abstract
This article begins with a discussion of the basic fracture modes, including dimple ruptures, cleavages, fatigue fractures, and decohesive ruptures, and of the important mechanisms involved in the fracture process. It then describes the principal effects of the external environment that significantly affect the fracture propagation rate and fracture appearance. The external environment includes hydrogen, corrosive media, low-melting metals, state of stress, strain rate, and temperature. The mechanism of stress-corrosion cracking in metals such as steels, aluminum, brass, and titanium alloys, when exposed to a corrosive environment under stress, is also reviewed. The final section of the article describes and shows fractographs that illustrate the influence of metallurgical discontinuities such as laps, seams, cold shuts, porosity, inclusions, segregation, and unfavorable grain flow in forgings and how these discontinuities affect fracture initiation, propagation, and the features of fracture surfaces.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... Abstract This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress...
Abstract
This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress-relaxation testing. Shear testing, torsion testing, and formability testing are also discussed. The discussion of tension testing includes information about stress-strain curves and the properties described by them.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000616
EISBN: 978-1-62708-181-8
..., which nucleated at ruptured (Ni,Ti)C inclusions, was preempted as many smaller microvoids nucleated at δ-phase precipitates. SEM, 950× (J.E. Nolan, Westinghouse Hanford Company) Creep fracture in Inconel alloy MA754, a mechanically alloyed nickel-base superalloy stabilized by yttria. Fig. 850...
Abstract
This article is an atlas of fractographs that covers nickel-base superalloys. The fractographs display the following: hydrogen-embrittlement fracture; segment of a fractured second-stage gas-turbine wheel; gas-producer turbine rotor cast; dendritic stress-rupture fracture surface; fatigue and creep fractures; simultaneous metallographic-fractographic evaluation; and effect of thermal cycling on fatigue fracture.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000600
EISBN: 978-1-62708-181-8
... because of corrosion fatigue. (b) This category includes creep rupture, stress-corrosion cracking, hydrogen embrittlement, thermally included embrittlement, and any other combination of applied stress and environment that results in an intergranular fracture path. Fractures resulting from the...
Abstract
The Atlas of Fractographs contains more than 1,300 fractographs, corresponding to 30 materials, including common grades of iron and steel, nonferrous metals and alloys, composites, and polymers. This article serves as the table of contents, describing how the information in the Atlas is organized and how the fractographs are laid out. It also provides a summary of the various causes or modes of fracture, including cleavage, dimple rupture, fatigue fracture, and decohesion.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004010
EISBN: 978-1-62708-185-6
... formed Ti-6Al-4V disk The mechanical properties of the roll formed VT25u disk, including creep properties, stress-rupture resistance, and tensile behavior, were comparable to those of conventionally forged VT-25u, as described subsequently. Electron back scatter diffraction analyses suggested that...
Abstract
This article describes the roll forming of components of nickel, titanium, and aluminum alloys. The metallurgical characteristics of the roll formed components, such as macrostructures, microstructures, tensile strength, and stress rupture performance, are discussed. The article compares the resulting properties of roll formed and conventionally forged components.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005342
EISBN: 978-1-62708-187-0
... cracking at the tip of a crack in ductile iron. Original magnification: 200×. Courtesy of Stork Technimet, Inc. New Berlin, WI Cast alloys that have been exposed to elevated temperatures for extended periods can incur creep failure if the operating temperature is above the range recommended for the...
Abstract
This article discusses the visual and microscopic characteristics of fractures of cast alloys. The fractures include ductile rupture, transgranular brittle fracture, intergranular fracture, fatigue, and environmentally induced fracture. The article describes the factors that affect the fracture appearance.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000610
EISBN: 978-1-62708-181-8
... candy fracture, cleavage fracture, brittle fracture, high-cycle fatigue fracture, fatigue striations, hydrogen-embrittlement failure, creep crack propagation, fatigue crack nucleation, intergranular creep fracture, torsional overload fracture, stress-corrosion cracking, and grain-boundary damage of...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of austenitic stainless steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the following: fatigue-crack fracture, rock candy fracture, cleavage fracture, brittle fracture, high-cycle fatigue fracture, fatigue striations, hydrogen-embrittlement failure, creep crack propagation, fatigue crack nucleation, intergranular creep fracture, torsional overload fracture, stress-corrosion cracking, and grain-boundary damage of these steels. The austenitic stainless steel components include spring wires, preheater-reactor slurry transfer lines and gas lines of coal-liquefaction pilot plants, oil feed tubes and suction couch rolls of paper machines, cortical screws and compression hip screws of orthopedic implants, and Jewett nails.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003024
EISBN: 978-1-62708-200-6
... response is time dependent and is called creep. Creep and creep rupture are not restricted to plastics. Many soft metals, such as gold, copper, and lead, creep at room temperature, and many structural metals, such as steel and aluminum, creep at elevated temperature. A perfectly elastic solid would...
Abstract
This article discusses the deformation and viscoelastic characteristics of plastics as polymeric materials, focusing on the test methods used for the evaluation of their mechanical properties, methods available for analytically predicting the deformation response of polymers, and the effect of viscoelasticity on the test methods used. Two common ways of evaluating viscoelasticity of plastics are by means of creep experiments and dynamic mechanical experiments. Graphic or tabular analysis of test data, time-temperature superposition, and empirical correlation methods are commonly employed for analytical prediction of deformation characteristics of polymers.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003086
EISBN: 978-1-62708-199-3
.... Fig. 9 Isochronous stress-strain curves for specimens of a material creep tested at a given temperature When a creep test is continued until the specimen ruptures, the test is often called a creep-rupture or stress-rupture test, and the results are reported on a plot of stress versus time...
Abstract
Material properties are the link between the basic structure and composition of the material and the service performance of a part or component. This article describes the most significant properties that must be considered when choosing a metal for a given application, namely physical properties (mass characteristics and thermal, electrical, magnetic, radiation, and optical properties), chemical properties (corrosion and oxidation resistance) and mechanical properties (tensile and yield strength, elongation, toughness, hardness, creep, and fatigue). The article also contains tables that list room-temperature physical properties, vapor pressures, and mechanical properties for various metals.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006266
EISBN: 978-1-62708-169-6
... corrosion resistance La, Th Sulfidation resistance Cr, Co, Si Improves creep properties B, Ta Increases rupture strength B (a) Grain-boundary refiners B, C, Zr, Hf Facilitates working … Retard γ′ coarsening Re Carbide formation MC W, Ta, Ti, Mo, Nb, Hf M 7 C 3 Cr M...
Abstract
Cast nickel-base alloys are used extensively in corrosive-media and high-temperature applications. This article briefly reviews the common types of heat treatments of nickel alloy castings: homogenization, stress relieving, in-process annealing, full annealing, solution annealing, quenching, coating diffusion, and precipitation. It describes the three general strengthening mechanisms, namely, solid-solution hardening, age hardening, and carbide precipitation. The article summarizes the typical heat treatment of the general families of nickel-base castings used in industrial applications. It focuses on the solution treatment and age hardening of cast nickel-base superalloys and the heat treatment of cast solid-solution alloys for corrosion-resisting applications. The article also discusses the typical types of atmospheres used in annealing or solution treating: exothermic, endothermic, dry hydrogen, dry argon, and vacuum.
Series: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005930
EISBN: 978-1-62708-166-5
... temperatures (for example, >980 °C, or 1800 °F), more and more applications use nickel-base alloys because of their improved creep-rupture strengths and oxidation resistance. Cobalt-base alloys are generally too expensive except for very special applications. Therefore, this discussion is limited to the use...
Abstract
This article reviews high-temperature corrosion of furnace parts used in heat-treating furnaces. It provides a comparison of cast and wrought materials in the context of their general considerations, advantages, and applications. The article provides information on the heat-resistant alloys used for parts that go through the furnaces, including trays, fixtures, conveyor chains and belts, and quenching fixtures and parts, and the parts that remain in the furnace such as combustion tubes, radiant tubes, burners, thermowells, roller and skid rails, baskets, pots, retorts, muffles, and drive and idler drums. The article also reviews the material characteristics of silicon/silicon carbide composite and reaction-bonded silicon carbide as used in radiant tubes.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003164
EISBN: 978-1-62708-199-3
... conventional titanium alloys, the titanium aluminides feature enhanced high-temperature properties such as strength retention, creep and stress rupture and fatigue resistance. Table 7 Properties of titanium aluminides, titanium-base conventional alloys, and nickel-base superalloys Property...
Abstract
Alloys based on ordered intermetallic compounds constitute a unique class of metallic material that form long-range ordered crystal structures below a critical temperature. Aluminides, a unique class of ordered intermetallic materials, possesses many attributes like low densities, high melting points, and good high-temperature strength that make them an attractive material for high-temperature structural application. This article discusses the properties, chemical composition, corrosion resistance, processing, fabrication, alloying effects and crystallographic data of nickel aluminides (Ni3Al and NiAl), iron aluminides (Fe3Al and FeAl) and titanium aluminides (alpha-2 alloys, orthorhombic alloys, and gamma alloys).
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003120
EISBN: 978-1-62708-199-3
... by processing. For a given nominal composition, there are property advantages and disadvantages of the structures produced by deformation processing and by casting. Cast superalloys generally have coarser grain sizes, more alloy segregation, and improved creep and rupture characteristics. Wrought...
Abstract
Superalloys are nickel, iron-nickel, and cobalt-base alloys generally used for high-temperature applications. Superalloys are used in aircraft, industrial, marine gas turbines, nuclear reactors, spacecraft structures, petrochemical production, orthopedic and dental prostheses, and environmental protection applications. This article discusses the material characteristics, phases, structures, and systems of superalloys. It describes the processing of superalloys, including primary and secondary melting, deformation processing (conversion), powder processing, investment casting, and joining methods. The article also describes the properties, microstructure, and thermal exposure of superalloys. It further discusses the effects of environmental factors on superalloys, including oxidation and hot corrosion. Protective coatings are also discussed. The article provides information on the mechanical properties and chemical composition of nickel, iron, and cobalt-base superalloys in both the cast and wrought forms.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003118
EISBN: 978-1-62708-199-3
... the wrought and cast corrosion-resistant grades. This difference in carbon results in significant changes in properties, for example, the increased carbon content imparts higher creep-rupture strength in the cast heat-resistant steels. Table 4 lists the compositions of standard cast heat...
Abstract
Cast stainless steels are widely used for their corrosion resistance in aqueous media at or near room temperature and for service in hot gases and liquids at elevated temperatures. This article provides a comparison between cast and wrought stainless steels in terms of composition, microstructure and properties. It discusses the grade designations and compositions of cast stainless steels. The article describes the mechanical properties, applications, and corrosion characteristics of corrosion-resistant steel castings and heat-resistant steel castings.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006265
EISBN: 978-1-62708-169-6
... carbides into solid solution. These extreme temperatures produce a coarse grain structure, minimum softness, and improved high-temperature mechanical properties, such as creep or stress rupture. Stress relieving : This is a heat treatment to reduce or eliminate internal stresses in work-hardened alloys...
Abstract
This article describes the heat treatment of wrought solid-solution and precipitation-hardening alloys with a focus on the major families of wrought nickel alloys. It also provides information on the heat treatment of some representative solid-solution alloys in the Monel (Ni-Cu), Inconel (Ni-Cr-Mo), Hastelloy (Ni-Mo-Cr), and Incoloy (Ni-Fe-Cr) families of alloys. The heat treatment processes for gamma prime nickel alloys, gamma prime nickel-iron superalloys, and gamma double-prime nickel-iron superalloys are also included. The article also provides information on age-hardenable alloys, and the effects of cold work on aging response and grain growth with examples.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003225
EISBN: 978-1-62708-199-3
... Contributing factors Load exceeded the strength of the part Check for proper alloy and processing by hardness check and destructive testing, chemical analysis Loading direction can show failure was secondary Short-term, high-temperature, high-stress rupture has ductile appearance (see creep...
Abstract
Analysis of the failure of a metal structure or part usually requires identification of the type of failure. Failure can occur by one or more of several mechanisms, including surface damage (such as corrosion or wear), elastic or plastic distortion, and fracture. This leads to a wide range of failures, including fatigue failure, distortion failure, wear failure, corrosion failure, stress-corrosion cracking, liquid-metal embrittlement, hydrogen-damage failure, corrosion-fatigue failure, and elevated-temperature failure. This article describes the classification of fractures on a macroscopic scale as ductile fractures, brittle fractures, fatigue fractures, and fractures resulting from the combined effects of stress and environment.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.9781627081764
EISBN: 978-1-62708-176-4