Skip Nav Destination
Close Modal
By
Gary R. Halford, Bradley A. Lerch, Michael A. McGaw
By
Daniel J. Benac, V.P. Swaminathan, Ph.D.
By
Arun Sreeranganathan, Douglas L. Marriott
By
J.R. Gordon
By
Howard R. Voorhees, Martin Prager
By
R.C. Hurst, J.H. Rantala
Search Results for
creep life
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 615
Search Results for creep life
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Image
Correlation between damaged classification and expended creep-life fraction...
Available to PurchasePublished: 01 January 1993
Fig. 11 Correlation between damaged classification and expended creep-life fraction for 1 1 4 Cr- 1 2 Mo steels. Source: Ref 22
More
Image
Creep life assessment based on cavity classification in boiler steels. Sour...
Available to PurchasePublished: 15 January 2021
Image
Creep life assessment based on cavity classification in boiler steels. Sour...
Available to PurchasePublished: 01 January 1997
Book Chapter
Fatigue, Creep Fatigue, and Thermomechanical Fatigue Life Testing
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003314
EISBN: 978-1-62708-176-4
... load cells extensometry strain measuring devices environmental chambers graphic recorders furnaces heating systems baseline isothermal fatigue testing creep-fatigue interaction thermomechanical fatigue fatigue resistance Fatigue closed loop control advanced software tools fatigue life...
Abstract
This article describes the phenomena of crack initiation and early growth. It examines specimen design and preparation as well as the apparatus used in crack initiation testing. The article provides descriptions of the various commercially available fatigue testing machines: axial fatigue testing machines and bending fatigue machines. Load cells, grips and alignment devices, extensometry and strain measuring devices, environmental chambers, graphic recorders, furnaces, and heating systems of ancillary equipment are discussed. The article presents technologies available to accomplish closed loop control of materials testing systems in performing standard materials tests and for the development of custom testing applications. It explores the advanced software tools for materials testing. The article includes a description of baseline isothermal fatigue testing, creep-fatigue interaction, and thermomechanical fatigue. The effects of various variables on fatigue resistance and guidelines for fatigue testing are also presented.
Image
Creep cavitation damage classification as a function of expended life for 1...
Available to Purchase
in Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 31 Creep cavitation damage classification as a function of expended life for 1 1 4 Cr- 1 2 Mo steels
More
Image
Published: 01 December 1998
Fig. 15 Increase in creep-rupture life with increase in V f of fine γ′, demonstrated in a columnar-grain, directionally solidified nickel-base superalloy, PWA 1422 (variant of MarM-200, with hafnium addition)
More
Image
Correlation of creep-rupture life with 220 MPa (32 ksi) stress at 980 °C (1...
Available to PurchasePublished: 01 June 2016
Fig. 11 Correlation of creep-rupture life with 220 MPa (32 ksi) stress at 980 °C (1800 °F) with volume fraction ( V f ) of fine gamma-prime (γ′) precipitates in alloy MAR-M-200 (columnar grain directionally solidified casting)
More
Image
Effect of molybdenum on creep-rupture life of normalized 4% Si iron at 650 ...
Available to PurchasePublished: 31 August 2017
Fig. 5 Effect of molybdenum on creep-rupture life of normalized 4% Si iron at 650 and 816 °C (1200 and 1500 °F). Source: Ref 13
More
Image
Creep-fatigue interaction effects on isothermal cyclic life of AISI type 30...
Available to Purchase
in Fatigue, Creep Fatigue, and Thermomechanical Fatigue Life Testing
> Mechanical Testing and Evaluation
Published: 01 January 2000
Fig. 29 Creep-fatigue interaction effects on isothermal cyclic life of AISI type 304 stainless steel tested in air at 650 °C (1200 °F), normal straining rate of 4 × 10 −3 s −1 . After Ref 65
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002387
EISBN: 978-1-62708-193-1
... Abstract This article focuses on the subject of proactive or predictive maintenance with particular emphasis on the control and prediction of corrosion damage for life extension and failure prevention. It discusses creep life assessment from the perspective of creep-rupture properties...
Abstract
This article focuses on the subject of proactive or predictive maintenance with particular emphasis on the control and prediction of corrosion damage for life extension and failure prevention. It discusses creep life assessment from the perspective of creep-rupture properties and creepcrack growth. Practical methods based on replication and parametric approaches are also discussed.
Book Chapter
Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003517
EISBN: 978-1-62708-180-1
... evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods. coating evaluation creep cavitation damage assessment elevated-temperature failure gas turbine blade hardness testing high-temperature crack growth methods life...
Abstract
This article focuses on the life assessment methods for elevated-temperature failure mechanisms and metallurgical instabilities that reduce life or cause loss of function or operating time of high-temperature components, namely, gas turbine blade, and power plant piping and tubing. The article discusses metallurgical instabilities of steel-based alloys and nickel-base superalloys. It provides information on several life assessment methods, namely, the life fraction rule, parameter-based assessments, the thermal-mechanical fatigue, coating evaluations, hardness testing, microstructural evaluations, the creep cavitation damage assessment, the oxide-scale-based life prediction, and high-temperature crack growth methods.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... that are vulnerable to bulk creep damage typically are subjected to uniform loading and uniform temperature distribution during service. The life of such a component is related to the creep-rupture properties, and the type of failure is referred to as stress rupture or creep rupture. Stress or creep rupture is likely...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002390
EISBN: 978-1-62708-193-1
... rate behavior and those essential elements in making spectrum crack growth life prediction. It provides information on life assessment for bulk creep damage. crack growth rate creep damage high temperature life assessment spectrum life prediction CURRENT FRACTURE MECHANICS theory treats...
Abstract
The approaches to spectrum life prediction in components can be classified into two types, namely, history-based methods, using the life-fraction rule or other damage rules, and postservice evaluation methods. This article discusses the variables affecting the material crack growth rate behavior and those essential elements in making spectrum crack growth life prediction. It provides information on life assessment for bulk creep damage.
Book Chapter
Elevated-Temperature Life Assessment
Available to PurchaseSeries: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006807
EISBN: 978-1-62708-329-4
... Abstract This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated...
Abstract
This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.
Book Chapter
Fitness-for-Service Assessment of Welded Structures
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001477
EISBN: 978-1-62708-173-3
... of crack growth is a final option. This approach can be used to both monitor crack growth and assess remaining life or to decide whether or not to repair, replace, or retire the component under consideration. High-Temperature Creep Components that operate at elevated temperatures can fail because...
Abstract
Fitness-for-service assessment procedures can be used to assess the integrity, or remaining life, of components in service. Depending on the operating environment and the nature of the applied loading, a structure can fail by a number of different modes: brittle fracture, ductile fracture, plastic collapse, fatigue, creep, corrosion, and buckling. This article focuses on the broad categories of these failure modes: fracture, fatigue, environmental cracking, and high-temperature creep. It also discusses the benefits of a fitness-for-service approach.
Book Chapter
Creep and Stress Rupture Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... that are vulnerable to bulk creep damage typically are subjected to uniform loading and uniform temperature distribution during service. The life of such a component is related to the creep-rupture properties, and the type of failure is referred to as stress rupture or creep rupture. Stress or creep rupture is apt...
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002472
EISBN: 978-1-62708-194-8
... analysis will be confined to presenting data in the form that a designer might use, with emphasis on design principles rather than detailed design analysis. Thus, multiaxial stresses, part analysis, and creep-fatigue interaction are not formally treated. However, remaining life assessment and the effect...
Abstract
This article reviews the basic mechanisms of elevated-temperature behavior and associated design considerations, with an emphasis on metals. It discusses the key concepts of elevated-temperature design. These include plastic instability at elevated temperatures; deformation mechanisms and strain components associated with creep processes; stress and temperature dependence; fracture at elevated temperatures; and environmental effects. The article describes the basic presentation and analysis methods for creep rupture. It provides information on the application of these methods to materials selection and the setting of basic design rules. The article examines the limitations of high-temperature components as well as the alternative design approaches and tests for most high-temperature components.
Book Chapter
Assessment and Use of Creep-Rupture Properties
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003289
EISBN: 978-1-62708-176-4
... of required creep-rupture properties based on insufficient data. Methods for evaluation of remaining creep-rupture life, including parametric modeling, isostress testing, accelerated creep testing, evaluation by the Monkman-Grant coordinates, and the Materials Properties Council (MPC) Omega method, are also...
Abstract
This article discusses the methods for assessing creep-rupture properties, particularly, nonclassical creep behavior. The determination of creep-rupture behavior under the conditions of intended service requires extrapolation and/or interpolation of raw data. The article describes the various techniques employed for data handling of most materials and applications of engineering interest. These techniques include graphical methods, methods using time-temperature parameters, and methods used for estimations when data are sparse or hard to obtain. The article reviews the estimation of required creep-rupture properties based on insufficient data. Methods for evaluation of remaining creep-rupture life, including parametric modeling, isostress testing, accelerated creep testing, evaluation by the Monkman-Grant coordinates, and the Materials Properties Council (MPC) Omega method, are also reviewed.
Book Chapter
Influence of Multiaxial Stresses on Creep and Creep Rupture of Tubular Components
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003291
EISBN: 978-1-62708-176-4
... plastic case, and thermal stresses in a tube. The article illustrates the comparison of life predictions by the stress criteria and presents a simple mean diameter hoop stress equation, which is used for designing components. It also provides information on the multiaxial creep ductility of tubular...
Abstract
This article presents effective stress equations that are based on the von Mises criterion, the Tresca criterion, and the Huddleston criterion. It describes the calculation of effective stresses for different cases: elastic stresses, steady-state creep stresses, stresses in a fully plastic case, and thermal stresses in a tube. The article illustrates the comparison of life predictions by the stress criteria and presents a simple mean diameter hoop stress equation, which is used for designing components. It also provides information on the multiaxial creep ductility of tubular components and multiaxial testing methods.
1