Skip Nav Destination
Close Modal
Search Results for
creep fatigue
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 673 Search Results for
creep fatigue
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003314
EISBN: 978-1-62708-176-4
... to accomplish closed loop control of materials testing systems in performing standard materials tests and for the development of custom testing applications. It explores the advanced software tools for materials testing. The article includes a description of baseline isothermal fatigue testing, creep-fatigue...
Abstract
This article describes the phenomena of crack initiation and early growth. It examines specimen design and preparation as well as the apparatus used in crack initiation testing. The article provides descriptions of the various commercially available fatigue testing machines: axial fatigue testing machines and bending fatigue machines. Load cells, grips and alignment devices, extensometry and strain measuring devices, environmental chambers, graphic recorders, furnaces, and heating systems of ancillary equipment are discussed. The article presents technologies available to accomplish closed loop control of materials testing systems in performing standard materials tests and for the development of custom testing applications. It explores the advanced software tools for materials testing. The article includes a description of baseline isothermal fatigue testing, creep-fatigue interaction, and thermomechanical fatigue. The effects of various variables on fatigue resistance and guidelines for fatigue testing are also presented.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005411
EISBN: 978-1-62708-196-2
... kinetics, evolution of crack-tip stress fields due to creep, oxygen ingress, and change in the microstructure. It also provides a summary of creep-fatigue modeling approaches. creep oxidation kinetics oxygen ingress microstructure creep-fatigue modeling crack-tip stress field...
Abstract
The overarching goal of life-prediction research is to develop models for the various types of time dependencies in the crack-tip damage accumulation that occur in materials subjected to elevated temperatures. This article focuses on describing the models based on creep, oxidation kinetics, evolution of crack-tip stress fields due to creep, oxygen ingress, and change in the microstructure. It also provides a summary of creep-fatigue modeling approaches.
Image
Published: 01 January 1996
Fig. 18 Comparison between creep and creep-fatigue crack growth data in terms of the estimated ( C t )avg for 1.25Cr-0.5Mo steel at 538 °C (1000 °F). Source: Ref 59 , 60
More
Image
in Elevated-Temperature Life Assessment for Turbine Components, Piping, and Tubing
> Failure Analysis and Prevention
Published: 01 January 2002
Fig. 39 (a) Comparison of creep-fatigue crack growth rates with fatigue crack growth plotted as a function of Δ K . (b) The effect of hold time estimated for engineering structures when the creep crack growth rate is plotted as a function of ( C t ) avg
More
Image
in Fatigue, Creep Fatigue, and Thermomechanical Fatigue Life Testing
> Mechanical Testing and Evaluation
Published: 01 January 2000
Fig. 28 Schematic hysteresis loops encountered in isothermal creep-fatigue testing. (a) Pure fatigue, no creep. (b) Tensile stress hold, strain limited. (c) Compressive stress hold, strain limited. (d) Tensile and compressive stress hold, strain limited. (e) Tensile strain hold, stress
More
Image
in Fatigue, Creep Fatigue, and Thermomechanical Fatigue Life Testing
> Mechanical Testing and Evaluation
Published: 01 January 2000
Fig. 29 Creep-fatigue interaction effects on isothermal cyclic life of AISI type 304 stainless steel tested in air at 650 °C (1200 °F), normal straining rate of 4 × 10 −3 s −1 . After Ref 65
More
Image
in Fatigue, Creep Fatigue, and Thermomechanical Fatigue Life Testing
> Mechanical Testing and Evaluation
Published: 01 January 2000
Fig. 30 Predictability of creep-fatigue lives for tensile strain hold time cycles for Incoloy 800 and AISI type 304 stainless steel at elevated temperatures. Source: Ref 70 , 71
More
Image
Published: 01 January 1996
Fig. 2 Schematic representation of mechanistic aspects of creep-fatigue. (a) Effect of cycling on cavitation damage. (b) Effect of cavitation on cyclic crack growth. Source: Ref 11
More
Image
Published: 01 January 1996
Fig. 7 Typical loading waveforms used during creep-fatigue crack growth testing. Source: Ref 66
More
Image
Published: 30 August 2021
Fig. 19 API 579 creep fatigue damage acceptance criterion. Adapted from Ref 16 Material parameters to define the acceptable creep fatigue envelope Material D fm D cm Carbon steels 0.15 0.15 Low-alloy steels 0.15 0.15 9Cr-1Mo-V 0.10 0.02 Type
More
Image
in Elevated-Temperature Properties of Stainless Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 34 Comparison of linear damage rule of creep-fatigue interaction with design envelopes in ASME Code Case N-47 for 304 and 316 stainless steel. Creep-damage fraction = time/time-to-rupture (multiplied by a safety factor). Fatigue-damage fraction = number of cycles/cycles to failures
More
Book Chapter
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003545
EISBN: 978-1-62708-180-1
... deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures. aging carbide...
Abstract
This article reviews the applied aspects of creep and stress-rupture failures. It discusses the microstructural changes and bulk mechanical behavior of classical and nonclassical creep behavior. The article provides a description of microstructural changes and damage from creep deformation, including stress-rupture fractures. It also describes metallurgical instabilities, such as aging and carbide reactions, and evaluates the complex effects of creep-fatigue interaction. The article concludes with a discussion on thermal fatigue and creep fatigue failures.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002389
EISBN: 978-1-62708-193-1
... Abstract This article describes the concepts for characterizing and predicting elevated-temperature crack growth in structural materials. It discusses both creep and creep-fatigue crack growth and focuses mainly on creep crack growth tests that are carried out in accordance with ASTM E 1457...
Abstract
This article describes the concepts for characterizing and predicting elevated-temperature crack growth in structural materials. It discusses both creep and creep-fatigue crack growth and focuses mainly on creep crack growth tests that are carried out in accordance with ASTM E 1457. The article provides information on typical test procedures and equipment used for these tests. It concludes with information on crack growth correlations.
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003307
EISBN: 978-1-62708-176-4
... Abstract Predicting the service life of structural components involves creep-fatigue crack growth (CFCG) testing under pure creep conditions. This article provides a discussion on the loading condition and the type of ductile and brittle material showing creep behavior. It focuses...
Abstract
Predicting the service life of structural components involves creep-fatigue crack growth (CFCG) testing under pure creep conditions. This article provides a discussion on the loading condition and the type of ductile and brittle material showing creep behavior. It focuses on a description of the experimental method that should be followed in conducting tests of CFCG with various hold times. The article describes the testing conditions, definitions, and the necessary calculations of various crack-tip parameters considered during static and cyclic loading in time-dependent fracture mechanics. The parameters considered for static loading are C*, C(t), C*(t), C*h, Ct, and Cst(t). For cyclic loading, the parameters are delta Jc and (Ct)avg. An overview of life-prediction models is also provided.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... Abstract The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002410
EISBN: 978-1-62708-193-1
... Abstract This article discusses fracture, fatigue, and creep of nickel-base superalloys with additional emphasis on directionally solidified and single-crystal applications. It analyzes the physical metallurgy of these alloys. The effects of grain boundary and grain size on failure...
Abstract
This article discusses fracture, fatigue, and creep of nickel-base superalloys with additional emphasis on directionally solidified and single-crystal applications. It analyzes the physical metallurgy of these alloys. The effects of grain boundary and grain size on failure are summarized. The article also discusses the effects of microstructure and extrinsic parameters on fatigue crack propagation (FCP). It details the modeling of FCP rates and creep and creep-fatigue crack growth rates.
Image
Published: 01 January 1996
Fig. 33 Design fatigue-strain range curves for 304 and 316 stainless steel. (a) Design curves with continuous cycling (pure fatigue). (b) Design curves with hold times (creep-fatigue interaction)
More
Image
in Elevated-Temperature Properties of Stainless Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 33 Design fatigue-strain range curves for 340 and 316 stainless steel. (a) Design curves with continuous cycling (pure fatigue). (b) Design curves with hold times (creep-fatigue interaction)
More
Image
Published: 01 January 1996
Fig. 17 Correlation of measured crack growth rates with the C t calculated from experimental measurements ( Ref 61 ) for 2.25Cr-1.0Mo steel at 594 °C (1100 °F). (Note da / dt versus C t plotted for the creep crack growth data and ( da / dt ) avg with ( C t ) avg for the creep
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002405
EISBN: 978-1-62708-193-1
... the fatigue and fracture behavior of duplex stainless steels during stress-corrosion cracking. It details the elevated-temperature properties of duplex stainless steels, such as creep-fatigue behavior and thermal cycling properties. corrosion fatigue creep-fatigue behavior duplex stainless steel...
Abstract
This article reviews the influence of local strains and corrosion fatigue on the initiation of fatigue cracks in duplex stainless steels. It provides useful information on fatigue crack growth, fatigue strength, and fracture toughness of duplex stainless steels. The article discusses the fatigue and fracture behavior of duplex stainless steels during stress-corrosion cracking. It details the elevated-temperature properties of duplex stainless steels, such as creep-fatigue behavior and thermal cycling properties.
1