Skip Nav Destination
Close Modal
Search Results for
creep damage
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 178 Search Results for
creep damage
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006780
EISBN: 978-1-62708-295-2
... article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are...
Abstract
The principal types of elevated-temperature mechanical failure are creep and stress rupture, stress relaxation, low- and high-cycle fatigue, thermal fatigue, tension overload, and combinations of these, as modified by environment. This article briefly reviews the applied aspects of creep-related failures, where the mechanical strength of a material becomes limited by creep rather than by its elastic limit. The majority of information provided is applicable to metallic materials, and only general information regarding creep-related failures of polymeric materials is given. The article also reviews various factors related to creep behavior and associated failures of materials used in high-temperature applications. The complex effects of creep-fatigue interaction, microstructural changes during classical creep, and nondestructive creep damage assessment of metallic materials are also discussed. The article describes the fracture characteristics of stress rupture. Information on various metallurgical instabilities is also provided. The article presents a description of thermal-fatigue cracks, as distinguished from creep-rupture cracks.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005411
EISBN: 978-1-62708-196-2
... Abstract The overarching goal of life-prediction research is to develop models for the various types of time dependencies in the crack-tip damage accumulation that occur in materials subjected to elevated temperatures. This article focuses on describing the models based on creep, oxidation...
Abstract
The overarching goal of life-prediction research is to develop models for the various types of time dependencies in the crack-tip damage accumulation that occur in materials subjected to elevated temperatures. This article focuses on describing the models based on creep, oxidation kinetics, evolution of crack-tip stress fields due to creep, oxygen ingress, and change in the microstructure. It also provides a summary of creep-fatigue modeling approaches.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005404
EISBN: 978-1-62708-196-2
... constitutive description of the strain-rate-dependent behavior of engineering alloys must take into account the intrinsic causes of damage accumulation in the form of cavitation, dislocation evolution, and grain-boundary sliding. Moreover, because creep occurs at elevated temperatures, seldom does the...
Abstract
This article, to develop an understanding of the underlying mechanisms governing deformation at elevated temperatures, discusses the phenomenological effects resulting from temperature-induced thermodynamic and kinetic changes. It describes the deformation behavior of engineering materials using expressions known as constitutive equations that relate the dependence of stress, temperature, and microstructure on deformation. The article reviews the characteristics of creep deformation and mechanisms of creep, such as power-law creep, low temperature creep, power-law breakdown, diffusional creep, twinning during creep deformation, and deformation mechanism maps. It discusses the creep-strengthening mechanisms for most structural engineering components. The article provides a description of the microstructural modeling of creep in engineering alloys.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006756
EISBN: 978-1-62708-295-2
... what damage is present. Damage mechanism: The specific series of events that describe both how the damage was incurred and the resulting consequences. Examples of damage mechanisms include high-temperature creep, hydrogen embrittlement, stress-corrosion cracking, and sulfidation. Damage mechanism...
Abstract
The principal task of a failure analyst during a physical-cause investigation is to identify the sequence of events involved in the failure. Technical skills and tools are required for such identification, but the analyst also needs a mental organizational framework that helps evaluate the significance of observations. This article discusses the processes involved in the characterization and identification of damage and damage mechanisms. It describes the relationships between damage causes, mechanisms, and modes with examples. In addition, some of the more prevalent and encompassing characterization approaches and categorization methods of damage mechanism are also covered.
Book Chapter
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006757
EISBN: 978-1-62708-295-2
... heat treated cast alloy for gas turbine components showing different sizes of γ′ particles. Electropolished and electroetched. Courtesy of J.F. Radavich, Micro-Met Laboratories This is also the case when components suffering from creep damage or creep failure are examined and in which there may...
Abstract
Examination of a damaged component involves a chain of activities that, first and foremost, requires good observation and documentation. Following receipt and documentation, the features of damage can be recorded and their cause(s) investigated, as this article briefly describes, for typical types of damage experienced for metallic components. This article discusses the processes involved in visual or macroscopic examination of damaged material; the interpretation of fracture features, corrosion, and wear damage features; and the analysis of base material composition. It covers the processes involved in the selection of metallurgical samples, the preparation and examination of metallographic specimens in failure analysis, and the analysis and interpretation of microstructures. Examination and evaluation of polymers and ceramic materials in failure analysis are also briefly discussed.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000610
EISBN: 978-1-62708-181-8
... candy fracture, cleavage fracture, brittle fracture, high-cycle fatigue fracture, fatigue striations, hydrogen-embrittlement failure, creep crack propagation, fatigue crack nucleation, intergranular creep fracture, torsional overload fracture, stress-corrosion cracking, and grain-boundary damage of...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of austenitic stainless steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the following: fatigue-crack fracture, rock candy fracture, cleavage fracture, brittle fracture, high-cycle fatigue fracture, fatigue striations, hydrogen-embrittlement failure, creep crack propagation, fatigue crack nucleation, intergranular creep fracture, torsional overload fracture, stress-corrosion cracking, and grain-boundary damage of these steels. The austenitic stainless steel components include spring wires, preheater-reactor slurry transfer lines and gas lines of coal-liquefaction pilot plants, oil feed tubes and suction couch rolls of paper machines, cortical screws and compression hip screws of orthopedic implants, and Jewett nails.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006781
EISBN: 978-1-62708-295-2
..., creep, microstructural evolution, and surface damage such as oxidation. Mitigating failure resulting from each of the individual dominant damage mechanisms has comprised lifetimes’ worth of work, and each is yet to be fully solved in a statistically significant way for “real” materials having “real...
Abstract
Thermomechanical fatigue (TMF) is the general term given to the material damage accumulation process that occurs with simultaneous changes in temperature and mechanical loading. TMF may couple cyclic inelastic deformation accumulation, temperature-assisted diffusion within the material, temperature-assisted grain-boundary evolution, and temperature-driven surface oxidation, among other things. This article discusses some of the major aspects and challenges of dealing with TMF life prediction. It describes the damage mechanisms of TMF and covers various experimental techniques to promote TMF damage mechanisms and elucidate mechanism coupling interactions. In addition, life modeling in TMF conditions and a practical application of TMF life prediction are presented.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003225
EISBN: 978-1-62708-199-3
...) Ductile overload Brittle overload Fatigue Corrosion Wear Creep Visual, 1 to 50× (fracture surface) Necking or distortion in direction consistent with applied loads Dull, fibrous fracture Shear lips Little or no distortion Flat fracture Bright or coarse texture, crystalline...
Abstract
Analysis of the failure of a metal structure or part usually requires identification of the type of failure. Failure can occur by one or more of several mechanisms, including surface damage (such as corrosion or wear), elastic or plastic distortion, and fracture. This leads to a wide range of failures, including fatigue failure, distortion failure, wear failure, corrosion failure, stress-corrosion cracking, liquid-metal embrittlement, hydrogen-damage failure, corrosion-fatigue failure, and elevated-temperature failure. This article describes the classification of fractures on a macroscopic scale as ductile fractures, brittle fractures, fatigue fractures, and fractures resulting from the combined effects of stress and environment.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006760
EISBN: 978-1-62708-295-2
... carbon steels, decarburization and oxide are quite often associated with the creep voids ( Fig. 10 ). Fig. 10 (a) Creep damage in a tube. (b) Creep void in carbon steel showing oxide and decarburization. Nital etch. (c) Beginning creep in Manaurite superalloy. Marble’s etch. (d) Advanced creep in...
Abstract
Visual examination, using the unaided eye or a low-power optical magnifier, is typically one of the first steps in a failure investigation. This article presents the guidelines for selecting samples for scanning electron microscope examination and optical metallography and for cleaning fracture surfaces. It discusses damage characterization of metals, covering various factors that influence the damage, namely stress, aggressive environment, temperature, and discontinuities.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... electromechanical testing equipment, continuous extensometer measurements, and a relatively low testing frequency. Further details on testing are given in the article “Fatigue, Creep Fatigue, and Thermomechanical Fatigue Life Testing” in Mechanical Testing and Evaluation , Volume 8 of the ASM Handbook , 2000...
Abstract
Fatigue failures may occur in components subjected to fluctuating (time-dependent) loading as a result of progressive localized permanent damage described by the stages of crack initiation, cyclic crack propagation, and subsequent final fracture after a given number of load fluctuations. This article begins with an overview of fatigue properties and design life. This is followed by a description of the two approaches to fatigue, namely infinite-life criterion and finite-life criterion, along with information on damage tolerance criterion. The article then discusses the characteristics of fatigue fractures followed by a discussion on the effects of loading and stress distribution, and material condition on the microstructure of the material. In addition, general prevention and characteristics of corrosion fatigue, contact fatigue, and thermal fatigue are also presented.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006446
EISBN: 978-1-62708-190-0
... conditions require that both phase and group velocities of the second-harmonic wave mode match the phase and group velocities of the fundamental wave mode. The application of NLU to characterize plasticity-driven damage, such as plastic deformation, fatigue, and creep, has been extensively studied ( Ref 40...
Abstract
Nonlinear ultrasonic nondestructive examination (NDE) techniques are based on nonlinear interaction of ultrasonic waves with the material to be characterized and defects to be detected. This article introduces the basic principles of nonlinear material-wave interaction, the origin of intrinsic nonlinearity in intact solids, and the main mechanisms of excess nonlinearity in damaged metals. It describes the measurement methods for nonlinear ultrasonic materials characterization and flaw-detection. The article schematically illustrates the instrumentation used for measurements of longitudinal wave and Rayleigh surface acoustic waves. It concludes with information on the applications of nonlinear ultrasonics.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003193
EISBN: 978-1-62708-199-3
...) Controlled porosity to enable coolant flow to the grinding zone and chip removal Intricate forms can be crush formed on the wheels Suitable for creep-feed or deep grinding, inside-diameter grinding, or high-conformity grinding Potential for longer wheel life than resin bond Excellent under oil as...
Abstract
In all grinding operations, care must be used in the selection of wheels and abrasive belts to meet finish and tolerance requirements without damaging the workpiece. This article discusses the major aspects of the grinding wheel, including production methods, selection considerations, standard marking systems, abrasives, and bonding types. It compares bonded wheel grinding with abrasive belt grinding. The article reviews the types of grinding fluids and discusses their importance in grinding operations. It describes the specific grinding processes and provides recommendations for grinding and grinding wheels.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006438
EISBN: 978-1-62708-190-0
... characteristics of interest (fatigue cracks, stress-corrosion cracks, creep, pitting, erosion, embrittlement, wear, planer cracks/voids, transverse/axial cracks, color variation, density, resonant frequency, etc.) The size and orientation of rejectable/reportable flaws The anticipated locations of flaws of...
Abstract
This article provides a discussion on general nondestructive evaluation (NDE) science and considerations for specific technique selection. It explains the basic concept of flaw detection and evaluation and probability of detection. The article provides an overview of NDE methods with their applications, limitations, and advantages. It includes details on NDE codes, calibration standards, inspection frequency, guidance on how to perform inspections, applicability, and mandatory and nonmandatory practice. The article also provides tips on where to focus inspections in order to align with the likely areas of damage or degradation and a number of other aspects of inspection.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003224
EISBN: 978-1-62708-199-3
... type Tension Torsion Compression Shear Creep Brittle type Integranular Transgranular Fatigue Porosity Causes of brittle fracture Manufacturing defects Hydrogen and caustic embrittlement Inherent brittleness Corrosion Stress corrosion Heat...
Abstract
The primary goal of failure analysis is to prevent the recurrence of product failures. This article discusses the sequence of activities in failure analysis and offers insight on how to gather background information, examine and assess damage, and identify the cause of the problem. It also explains where to look for evidence and how to collect samples for various types of testing. In addition, the article provides an introduction to fracture mechanics and explains how to predict and avoid fractures, including fatigue fracture, through testing and computational techniques.
Series: ASM Handbook
Volume: 17
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.hb.v17.a0006462
EISBN: 978-1-62708-190-0
...-temperature creep, corrosion, wear, and other degradation mechanisms. The symbol D is used to denote damage in a general way. In the safe-life approach, one simply defines the service life to be sufficiently short that the probability of failure due to this service-induced evolution of damage to a failure...
Abstract
Both nondestructive testing (NDT) and nondestructive evaluation (NDE) use noninvasive measurement techniques to gain information about defects and various properties of materials, components, and structures. This article begins with a discussion on the historical development of quantitative measurement techniques, evaluation reliability, and quantitative interpretation of nondestructive inspection methods. The common nondestructive evaluation methods, along with their uses and limitations, are summarized in a table. The article conceptually illustrates the interplay of NDE and fracture mechanics in the damage tolerant approach. It concludes with information on pressure vessel applications that can be separated into three protocols used by military nuclear power, commercial nuclear power, and non-nuclear pressure vessels and/or fired boilers.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003245
EISBN: 978-1-62708-199-3
... partly ferritic; the presence of ferrite results in lower creep resistance and higher ductility at temperatures of 870 to 1150 °C (1600 to 2100 °F) than for the wholly austenitic alloys. Alloys HD and HE are also more susceptible to the development of the undesirable sigma phase if exposed to...
Abstract
Proper sectioning of the surface to be examined is a very important step in preparing steel specimens. The first step in preventing damage to the metallurgical structure is to minimize the amount of sectioning that is done. This article discusses the various metallographic techniques, namely mounting, grinding, polishing, and etching involved in the microstructural analysis of carbon and alloy steels, case hardening steels, cast iron, ferrous powder metallurgy alloys, wrought and cast stainless steels, tool materials, steel castings, iron-chromium-nickel heat-resistant casting alloys and different product forms of steels.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006764
EISBN: 978-1-62708-295-2
... and triangulate AE stress-wave source in response to mechanical or thermal stress. Corrosion, stress-corrosion cracking, weld cracking, creep and fatigue cracking Sensitive to noise and vibration; identifies location of discontinuity rather than type of discontinuity Allows the whole volume of the...
Abstract
Nondestructive testing (NDT), also known as nondestructive evaluation (NDE), includes various techniques to characterize materials without damage. This article focuses on the typical NDE techniques that may be considered when conducting a failure investigation. The article begins with discussion about the concept of the probability of detection (POD), on which the statistical reliability of crack detection is based. The coverage includes the various methods of surface inspection, including visual-examination tools, scanning technology in dimensional metrology, and the common methods of detecting surface discontinuities by magnetic-particle inspection, liquid penetrant inspection, and eddy-current testing. The major NDE methods for internal (volumetric) inspection in failure analysis also are described.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003822
EISBN: 978-1-62708-183-2
... and insights on the most common forms of corrosion observed with titanium alloys, including general corrosion, crevice corrosion, anodic pitting, hydrogen damage, stress-corrosion cracking, galvanic corrosion, corrosion fatigue, and erosion-corrosion. It also provides practical strategies for...
Abstract
Titanium alloys are often used in highly corrosive environments because they are better suited than most other materials. The excellent corrosion resistance is the result of naturally occurring surface oxide films that are stable, uniform, and adherent. This article offers explanations and insights on the most common forms of corrosion observed with titanium alloys, including general corrosion, crevice corrosion, anodic pitting, hydrogen damage, stress-corrosion cracking, galvanic corrosion, corrosion fatigue, and erosion-corrosion. It also provides practical strategies for expanding the useful application range for titanium and includes a comprehensive overview of available corrosion data.
Book: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001297
EISBN: 978-1-62708-170-2
... Abstract This article focuses on the evaluation of mechanical properties of freestanding films and films adherent to their substrates. Common methods of testing freestanding films, including uniaxial tensile testing, uniaxial creep testing, biaxial testing, and beam-bending methods, are...
Abstract
This article focuses on the evaluation of mechanical properties of freestanding films and films adherent to their substrates. Common methods of testing freestanding films, including uniaxial tensile testing, uniaxial creep testing, biaxial testing, and beam-bending methods, are discussed. For films which are adherent to their substrates, indentation testing is used to evaluate hardness, creep, and strength.
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000609
EISBN: 978-1-62708-181-8
...) range. The black voids at grain boundaries are typical of creep damage. 3% nital, 500× (J.R. Kattus, Associated Metallurgical Consultants Inc.) Effect of inclusions on fatigue crack propagation (FCP) in ASTM A514F. The conventionally melted electric furnace steel was water quenched from 900 °C...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of ASTM/ASME alloy steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the solidification cracking, creep failure, brittle fracture, fracture by overpressurization, inclusion effect, fatigue crack propagation, ductile fatigue striation, secondary cracking, intergranular fracture, and elevated-temperature fracture of alloy steels used in pressure vessels, steam boiler superheater tubes, and box-girder bridges.