Skip Nav Destination
Close Modal
Search Results for
crankshafts
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 322 Search Results for
crankshafts
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005865
EISBN: 978-1-62708-167-2
... Abstract Induction heat treatment is a common method for hardening and tempering of crankshafts, which are necessary components in almost every internal combustion engine for cars, trucks, and machinery, as well as pumps, compressors, and other devices. Similar to crankshafts, camshafts also...
Abstract
Induction heat treatment is a common method for hardening and tempering of crankshafts, which are necessary components in almost every internal combustion engine for cars, trucks, and machinery, as well as pumps, compressors, and other devices. Similar to crankshafts, camshafts also belong to the same group of the critical engine/powertrain components. This article focuses on induction technologies used for surface hardening and tempering of automotive crankshafts, and provides general information on U-shaped inductors with crankshaft rotation and clamshell or split inductors without crankshaft rotation and their pros and cons. It also describes the effect of post-heat-treatment processes in crankshafts. The article concludes with a discussion on induction hardening of camshafts that focuses on those used in automobiles and truck engines.
Image
in High-Strength Structural and High-Strength Low-Alloy Steels
> Properties and Selection: Irons, Steels, and High-Performance Alloys
Published: 01 January 1990
Fig. 24 Required manufacturing steps for producing crankshafts from quenched and tempered and microalloyed medium-carbon steels
More
Image
in Systematic Analysis of Induction Coil Failures and Prevention
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 43 Top: sketch of a Stationary Hardening Process for Crankshafts and Camshafts (SHarP-C) coil circuit for crankshaft and camshaft hardening. Bottom: Magnetic coupling of the top and bottom coils. Source: Ref 33
More
Image
Published: 09 June 2014
Fig. 16 Example of typical sequence of hardening of V-6 crankshafts
More
Image
Published: 01 December 2008
Fig. 12 Two crankshafts produced using a ceramic foam filter positioned vertically in the drag just downstream of the sprue. Casting yield is 91%.
More
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006427
EISBN: 978-1-62708-192-4
..., and Friction and Wear Control of IC engine. The article explains the process of friction reduction by surface textures or coatings. It provides information on surface hardening of iron and steel, which is commonly employed for engine and powertrain components such as crankshafts, cams, and cylinder liners...
Abstract
This article focuses on friction, lubrication, and wear of internal combustion engine parts, improvements in which provide important gains in energy efficiency, performance, and longevity of the internal combustion (IC) engine systems. It discusses the types, component materials, and Friction and Wear Control of IC engine. The article explains the process of friction reduction by surface textures or coatings. It provides information on surface hardening of iron and steel, which is commonly employed for engine and powertrain components such as crankshafts, cams, and cylinder liners. The article also discusses advanced surface engineering technologies, such as diamondlike carbon coatings and surface texture technology. Information on thermal-spray methods that have led to improvements in engine components is also provided. The article describes IC engine-components wear, namely, piston assembly wear, valvetrain wear, cylinder-bore wear, and engine bearing wear. It concludes with information on inlet valve and seat wear of IC engine.
Image
Published: 09 June 2014
Fig. 2 Induction-hardened crankshaft journals with etchings revealing band hardening patterns. (a) V-6 automotive crankshaft. (b) V-8 automotive crankshaft. Courtesy of Inductoheat Inc.
More
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006763
EISBN: 978-1-62708-295-2
..., an exemplar fractured crankshaft with its associated journal fatigue fracture section has been used in this article to demonstrate various imaging techniques. The exemplar fractured crankshaft is shown on the photo table in Fig. 5 to 7 . The exemplar crankshaft fracture surface with overall photo table LED...
Abstract
Failure analysis is an investigative process that uses visual observations of features present on a failed component fracture surface combined with component and environmental conditions to determine the root cause of a failure. The primary means of recording the conditions and features observed during a failure analysis investigation is photography. Failure analysis photographic imaging is a combination of both science and art; experience and proper imaging techniques are required to produce an accurate and meaningful fracture surface photograph. This article reviews photographic principles and techniques as applied to failure analysis, both in the field and in the laboratory. The discussion covers the processes involved in field and laboratory photographic documentations, provides a description of professional digital cameras, and gives information on photographic lighting and microscopic photography. Special techniques can be employed to deal with highly reflective conditions and are also described in this article.
Image
in Modeling and Simulation of Stresses and Distortion in Induction Hardened Steels
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 31 Simplified solid model of crankshaft bearing/cheek section with lubrication hole in bearing surface.
More
Image
in Modeling and Simulation of Stresses and Distortion in Induction Hardened Steels
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 33 DANTE predicted temperature profile in crankshaft bearing section after 3 s induction heating period.
More
Image
in Modeling and Simulation of Stresses and Distortion in Induction Hardened Steels
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 34 Predicted austenite fraction in crankshaft bearing section in Fig. 33 after the 3 s induction heating period: (a) bearing cross section, and (b) magnified view of austenite fraction around oil hole.
More
Image
in Modeling and Simulation of Stresses and Distortion in Induction Hardened Steels
> Induction Heating and Heat Treatment
Published: 09 June 2014
Fig. 35 Nodal locations on oil-hole edge of crankshaft bearing section in Fig. 33 : Node 4320 on thin material position and Node 4344 at 90 degrees around hole edge (see text for discussion).
More
Image
Published: 01 January 2002
Fig. 11 Ductile-iron crankshaft segment essentially free of exogenous inclusions (1, left) and with numerous exogenous inclusions (2, right). Low pouring temperature and poor mold filling practice were the cause of the inclusions in part 2.
More
Image
Published: 01 January 2002
Fig. 42 Micrographs of a failed crankshaft main-bearing journal. (a) Cope side showing the surface broken open with raised areas. (b) Drag side, with fewer raised areas and almost no broken-open surface. Both 50×
More
Image
Published: 01 January 2002
Fig. 5 Fatigue fracture surface appearance of a failed crankshaft, showing “beach marks” on the lower part. The origin of the primary fracture is indicated by the arrow.
More
Image
Published: 01 January 1989
Fig. 35 Cylindrical grinding of a crankshaft. Coolant flow was turned off to improve photo clarity and focus.
More
Image
Published: 01 January 1989
Fig. 9 Setup for lapping a cylindrical surface on a crankshaft
More
Image
Published: 01 January 1990
Fig. 1 Indium-plated crankshaft bearing for a high-performance reciprocating engine. The indium is applied as an electroplate on a lead-bronze shell. Courtesy of Vandervel America, Inc.
More
Image
Published: 01 January 2002
Fig. 17 Forged 4140 steel textile-machine crankshaft that fractured in fatigue originating at machining marks and forging defects. (a) Configuration and dimensions (given in inches). (b) Fracture surface. (c) Hot trim marks. (d) Snag grinding marks. (e) Hot folds. (f) Section through a hot
More
Image
Published: 01 January 2002
Fig. 21 Diesel-engine crankshaft that broke because of misalignment. (a) Fatigue marks on the fracture surface. (b) Micrograph of a section through the fracture origin showing a small crack (arrow) and some inclusions. Etched with nital. 500×
More
1