Skip Nav Destination
Close Modal
Search Results for
crankshaft underfill
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3 Search Results for
crankshaft underfill
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006810
EISBN: 978-1-62708-329-4
..., and so on. Machine shafts are more an integral part of a machine and transmit motion directly, such as in crankshafts. Complex machine shafts can convert reciprocating motion into rotational motion and vice versa. Shafts operate under a broad range of service conditions, including dust-laden or corrosive...
Abstract
In addition to failures in shafts, this article discusses failures in connecting rods, which translate rotary motion to linear motion (and conversely), and in piston rods, which translate the action of fluid power to linear motion. It begins by discussing the origins of fracture. Next, the article describes the background information about the shaft used for examination. Then, it focuses on various failures in shafts, namely bending fatigue, torsional fatigue, axial fatigue, contact fatigue, wear, brittle fracture, and ductile fracture. Further, the article discusses the effects of distortion and corrosion on shafts. Finally, it discusses the types of stress raisers and the influence of changes in shaft diameter.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
..., and workpiece rotations between blows, among other factors. Other complex 3-D problems, which have been analyzed using FEM, include orbital forging, forging of crankshafts, extrusion of shapes, and helical-gear extrusion. In addition to predictions of metal flow and die fill (and associated metal-flow...
Abstract
Metalworking is one of the three major technologies used to fabricate metal products. This article tabulates the classification of metal forming processes. It discusses different types of metalworking equipment, including rolling mills, ring-rolling machines, and thread-rolling and surface-rolling machines. The article outlines the significant characteristics of pressing-type machines: load and energy characteristics, time-related characteristics, and accuracy characteristics. It summarizes different specialized processes such as advanced roll-forming methods, equal-channel angular extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006424
EISBN: 978-1-62708-192-4
... lubrication, because excess lubricant builds up in recesses in the die, resulting in underfilled forgings and can lead to undesirable roughening of the surface. For studies of surface roughness, the lubricant film (including conversion coating) must be removed. However, the residual lubricant film itself...
Abstract
Both hot and cold forgings are batch-type processes in which steady-state conditions are never fully achieved and the initial lubricant supply must perform adequately for the duration of the operation. This article discusses methods to measure lubricant effectiveness and wear. It describes the mixed-film lubrication and solid film lubrication in cold forging, as well as solid film lubrication and thick film lubrication in hot forging. The article reviews the factors affecting abrasive wear: die hardness, workpiece temperature, and lubrication and die temperature. It concludes with information on ways to improve resistance to abrasive wear.