Skip Nav Destination
Close Modal
Search Results for
cranes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 183 Search Results for
cranes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006830
EISBN: 978-1-62708-329-4
... equipment in three categories: cranes and bridges, attachments used for direct lifting, and built-in members of lifting equipment. It first reviews the mechanisms, origins, and investigation of failures. Then the article describes the materials used for lifting equipment, followed by a section explaining...
Abstract
The types of metal components used in lifting equipment include gears, shafts, drums and sheaves, brakes, brake wheels, couplings, bearings, wheels, electrical switchgear, chains, wire rope, and hooks. This article primarily deals with many of these metal components of lifting equipment in three categories: cranes and bridges, attachments used for direct lifting, and built-in members of lifting equipment. It first reviews the mechanisms, origins, and investigation of failures. Then the article describes the materials used for lifting equipment, followed by a section explaining the failure analysis of wire ropes and the failure of wire ropes due to corrosion, a common cause of wire-rope failure. Further, it reviews the characteristics of shock loading, abrasive wear, and stress-corrosion cracking of a wire rope. Then, the article provides information on the failure analysis of chains, hooks, shafts, and cranes and related members.
Image
Published: 01 January 2002
Fig. 6 Steel wire rope, used on a cleaning-line crane, that failed from fatigue resulting from vibration caused by shock loading. (a) Section of the wire rope adjacent to the fracture. Approximately 1 1 2 ×. (b) Unetched longitudinal section of a wire from the rope showing fatigue
More
Image
Published: 01 January 2002
Fig. 13 13,600-kg (15-ton) 1020 steel crane hook that failed in fatigue. View of a fracture surface of the hook showing beach marks. Original and improved designs for the nut and the threaded end of the hook are also shown. Dimensions given in inches
More
Image
Published: 01 January 2002
Fig. 18 1055 steel wheel from a stripper crane that failed by fatigue. The wheel foiled after about 1 year of service in the 544,320-kg (600-ton) crane. In the center of the fracture is a fatigue zone showing beach marks that are concentric around the crack origin, which evidently
More
Image
Published: 01 January 2002
Fig. 20 Welded stop-block assembly for a crane runway showing stop-block guide that failed by brittle fracture. Dimensions given in inches
More
Image
Published: 01 January 2002
Fig. 22 Surface burning that initiated fracture in the web of a crane-bridge wheel forged from 1055 steel. Etched with 2% nital. Approximately 35×
More
Image
Published: 01 January 2002
Fig. 23 1055 steel crane-bridge wheel that failed by fatigue. (a) Fracture surface of the crane-bridge wheel. Fatigue originated at forging defects. Dark areas are fatigue beach marks. (b) Micrograph of a nital-etched section through the fatigue origin showing a gross forging defect along
More
Image
Published: 01 August 2018
Fig. 30 1045 steel crane hook showing indications of forging laps of the type revealed by magnetic-particle inspection. Dimensions given in inches
More
Image
Published: 01 August 2018
Fig. 39 Forged crane hook showing stress areas subject to inspection
More
Image
Published: 01 August 2018
Fig. 40 50 kN (6 tonf) crane hook showing magnetic-particle indication of a forging lap, and section through hook showing depth of lap
More
Image
in Failures of Cranes and Lifting Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 33 13,600 kg (15 ton) grade 1020 steel crane hook that failed in fatigue. View of a fracture surface of the hook showing beach marks (right). Original and improved designs for the nut and the threaded end of the hook are also shown (left). Dimensions given in inches
More
Image
in Failures of Cranes and Lifting Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 39 Crane structural member failure due to insufficient penetration
More
Image
in Failures of Cranes and Lifting Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 41 Welded stop-block assembly for a crane runway showing stop-block guide that failed by brittle fracture. Dimensions given in inches
More
Image
in Failures of Cranes and Lifting Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 43 Surface burning that initiated fracture in the web of a crane-bridge wheel forged from grade 1055 steel. 2% nital etch. Original magnification: ~35×
More
Image
in Failures of Cranes and Lifting Equipment
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 44 Grade 1055 steel crane-bridge wheel that failed by fatigue. (a) Fracture surface of the crane-bridge wheel. Fatigue originated at forging defects. Dark areas are fatigue beach marks. (b) Micrograph of a nital-etched section through the fatigue origin showing a gross forging defect
More
Image
in Failure Analysis of Gears and Reducers
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 16 Two different contact patterns resulting from the deformation of a crane structure
More
Image
Published: 15 June 2020
and middle), helix (top right), stents (bottom left and middle), and square latticed hollow cylinders (bottom right). Scale bar: 2 mm. (c) Optical image of printed origami TiH 2 crane. (d) Optical image of a TiO 2 crane produced by annealing a printed origami TiH 2 crane at 1050 °C (1920 °F) in the air
More
Book Chapter
Book: Fractography
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0000606
EISBN: 978-1-62708-181-8
... fracture, brittle fracture, and in-service rotary bending fatigue fracture of fractured roof-truss angles, pressure-vessel shells, automotive axle shafts, broken keyed spindles, crane gears, blooming-mill spindles, automotive bolts, and crane wheels of these steels. axle shafts brittle fracture...
Abstract
This article is an atlas of fractographs that helps in understanding the causes and mechanisms of fracture of medium-carbon steels and in identifying and interpreting the morphology of fracture surfaces. The fractographs illustrate the torsional-fatigue fracture, cup and cone tensile fracture, brittle fracture, and in-service rotary bending fatigue fracture of fractured roof-truss angles, pressure-vessel shells, automotive axle shafts, broken keyed spindles, crane gears, blooming-mill spindles, automotive bolts, and crane wheels of these steels.
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0001811
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the mechanisms and common causes of failure of metal components in lifting equipment in the following three categories: cranes and bridges, particularly those for outdoor and other low-temperature service; attachments used for direct lifting, such as hooks...
Abstract
This article focuses on the mechanisms and common causes of failure of metal components in lifting equipment in the following three categories: cranes and bridges, particularly those for outdoor and other low-temperature service; attachments used for direct lifting, such as hooks, chains, wire rope, slings, beams, bales, and trunnions; and built-in members such as shafts, gears, and drums.