Skip Nav Destination
Close Modal
By
Gerhardus H. Koch
By
Kirk J. Bundy, Lyle D. Zardiackas
By
Gary S. Was, Jeremy Busby, Peter L. Andresen
By
C. Simsir
By
Javier C. Cruz, Jeffrey A. Jansen
By
J. Gilbert Kaufman
By
Ronald A. Wallis
By
K.S. Ravichandran
Search Results for
cracking
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 6107
Search Results for cracking
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003553
EISBN: 978-1-62708-180-1
... Abstract This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains...
Abstract
This article commences with a discussion on the characteristics of stress-corrosion cracking (SCC) and describes crack initiation and propagation during SCC. It reviews the various mechanisms of SCC and addresses electrochemical and stress-sorption theories. The article explains the SCC, which occurs due to welding, metalworking process, and stress concentration, including options for investigation and corrective measures. It describes the sources of stresses in service and the effect of composition and metal structure on the susceptibility of SCC. The article provides information on specific ions and substances, service environments, and preservice environments responsible for SCC. It details the analysis of SCC failures, which include on-site examination, sampling, observation of fracture surface characteristics, macroscopic examination, microscopic examination, chemical analysis, metallographic analysis, and simulated-service tests. It provides case studies for the analysis of SCC service failures and their occurrence in steels, stainless steels, and commercial alloys of aluminum, copper, magnesium, and titanium.
Book Chapter
Stress-Corrosion Cracking and Hydrogen Embrittlement
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002388
EISBN: 978-1-62708-193-1
... Abstract Stress-corrosion cracking (SCC) is a cracking phenomenon that occurs in susceptible alloys, and is caused by the conjoint action of tensile stress and the presence of a specific corrosive environment. This article provides an overview of the anodic dissolution mechanisms and cathodic...
Abstract
Stress-corrosion cracking (SCC) is a cracking phenomenon that occurs in susceptible alloys, and is caused by the conjoint action of tensile stress and the presence of a specific corrosive environment. This article provides an overview of the anodic dissolution mechanisms and cathodic mechanisms for SCC. It discusses the materials, environmental, and mechanical factors that control hydrogen embrittlement and SCC behavior of different engineering materials with emphasis on carbon and low-alloy steels, high-strength steels, stainless steels, nickel-base alloys, aluminum alloys, and titanium alloys.
Book Chapter
Corrosion Fatigue and Stress-Corrosion Cracking in Metallic Biomaterials
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004208
EISBN: 978-1-62708-184-9
... cracking (SCC). It discusses some of the mechanical and electrochemical phenomena related to the in vivo degradation of materials used for biomedical applications. These materials include stainless steels, cobalt and titanium-base alloy systems, and dental amalgam. The article addresses key issues related...
Abstract
This article provides information on biomedical aspects such as active biological responses and the chemical environment characterizing the internal physiological milieu, as well as electrochemical fundamentals needed for characterizing corrosion fatigue (CF) and stress-corrosion cracking (SCC). It discusses some of the mechanical and electrochemical phenomena related to the in vivo degradation of materials used for biomedical applications. These materials include stainless steels, cobalt and titanium-base alloy systems, and dental amalgam. The article addresses key issues related to the simulation of the in vivo environment, service conditions, and data interpretation. The factors influencing susceptibility to CF and SCC are reviewed. The article describes the testing methodology of CF and SCC. It also summarizes findings from laboratory testing, in vivo testing and retrieval studies related to CF and SCC.
Book Chapter
Effect of Irradiation on Stress-Corrosion Cracking and Corrosion in Light Water Reactors
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004147
EISBN: 978-1-62708-184-9
... for irradiation-assisted stress-corrosion cracking. The article addresses the effects of various radiation factors on corrosion. These include radiation-induced segregation at grain boundaries, radiation hardening, mode of deformation, radiation creep relaxation, and radiolysis. The article discusses a variety...
Abstract
This article examines the understanding of persistent material changes produced in stainless alloys during light water reactor (LWR) irradiation based on the fundamentals of radiation damage and existing experimental measurements. It summarizes the overall trends and correlations for irradiation-assisted stress-corrosion cracking. The article addresses the effects of various radiation factors on corrosion. These include radiation-induced segregation at grain boundaries, radiation hardening, mode of deformation, radiation creep relaxation, and radiolysis. The article discusses a variety of approaches for mitigating stress-corrosion cracking in LWRs, in categories of water chemistry, operating guidelines, new alloys, design issues, and stress mitigation. It concludes with a discussion on the irradiation effects of irradiation on corrosion of zirconium alloys in LWR environments.
Book Chapter
Modeling and Simulation of Steel Heat Treatment—Prediction of Microstructure, Distortion, Residual Stresses, and Cracking
Available to PurchaseSeries: ASM Handbook
Volume: 4B
Publisher: ASM International
Published: 30 September 2014
DOI: 10.31399/asm.hb.v04b.a0005950
EISBN: 978-1-62708-166-5
... of microstructure, distortion, residual stress, and cracking in gears, shafts, and bearing rings. bearing rings cracking distortion electrical conductivity gears heat treatment heat treatment simulation induction hardening magnetic permeability microstructure phase transformation residual stress...
Abstract
This article describes the fundamental concepts of heat treatment simulation, including the physical events and their interactions, the heat treatment simulation software, and the commonly used simulation strategies. It summarizes material data needed for heat treatment simulations and discusses reliable data sources as well as experimental and computational methods for material data acquisition. The article provides information on the process data needed for accurate heat treatment simulation and the methods for their determination. Methods for validating heat treatment simulations are also discussed with an emphasis on the underlying philosophy for the selection and design of validation tests. The article also discusses the applications, capabilities, and limitations of heat treatment simulations via selected industrial case studies for a better understanding of the effect of microstructure, distortion, residual stress, and cracking in gears, shafts, and bearing rings.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005938
EISBN: 978-1-62708-168-9
... Abstract Quench cracking is a brittle fracture phenomenon, and its occurrence depends not only on the stress changes but also on the mechanical characteristics of metals. Simulation of quenching processes has become possible in the analysis of quench cracking. This article commences...
Abstract
Quench cracking is a brittle fracture phenomenon, and its occurrence depends not only on the stress changes but also on the mechanical characteristics of metals. Simulation of quenching processes has become possible in the analysis of quench cracking. This article commences with a discussion on the studies conducted to determine the origin of quench cracks, and then describes various test procedures for determining the susceptibility of quench cracking. It provides a description of the brittle fracture in terms of fracture mechanics and fracture toughness of quenched metals, and discusses the effects of impurities, hydrogen, and surface roughness on cracking. The article exemplifies simulation works applied to several successful cracking tests on cylindrical and complex-shaped steel parts.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003666
EISBN: 978-1-62708-182-5
... Abstract This article describes the incubation, nucleation, and propagation of stress-corrosion cracking and how to evaluate it using standard tests. It discusses constant-strain, constant-load, bending, and uniaxial tension testing and how they compare when evaluating smooth and precracked...
Abstract
This article describes the incubation, nucleation, and propagation of stress-corrosion cracking and how to evaluate it using standard tests. It discusses constant-strain, constant-load, bending, and uniaxial tension testing and how they compare when evaluating smooth and precracked test specimens under elastic-strain, plastic-strain, and residual-stress conditions. The article provides guidance on specimen selection and preparation, strain rate, and test equipment. It also examines service and laboratory test environments and provides detailed information on how to test various steels and alloys and how to interpret test results.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003632
EISBN: 978-1-62708-182-5
... Abstract This article discusses the fundamental aspects of environmentally induced cracking. It provides a theoretical basis for the evaluation, testing, and methods of protection against the cracking. The article describes the mechanisms of corrosion that produce cracking of metals...
Abstract
This article discusses the fundamental aspects of environmentally induced cracking. It provides a theoretical basis for the evaluation, testing, and methods of protection against the cracking. The article describes the mechanisms of corrosion that produce cracking of metals and intermetallic compounds as a result of exposure to their environment.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003633
EISBN: 978-1-62708-182-5
... Abstract Stress-corrosion cracking (SCC) is a phenomenon in which time-dependent crack growth occurs when the necessary electrochemical, mechanical, and metallurgical conditions exist. This article provides an overview of the environmental phenomenon, mechanisms, and controlling parameters...
Abstract
Stress-corrosion cracking (SCC) is a phenomenon in which time-dependent crack growth occurs when the necessary electrochemical, mechanical, and metallurgical conditions exist. This article provides an overview of the environmental phenomenon, mechanisms, and controlling parameters of SCC. It describes the phenomenological and mechanistic aspects of the initiation and propagation of SCC. The article includes a phenomenological description of crack initiation and propagation that describes well-established experimental evidence and observations of stress corrosion. Discussions on mechanisms describe the physical process involved in crack initiation and propagation. The article also includes information on dissolution models and mechanical fracture models.
Book Chapter
Environmental Stress Cracking
Available to PurchaseSeries: ASM Handbook
Volume: 11B
Publisher: ASM International
Published: 15 May 2022
DOI: 10.31399/asm.hb.v11B.a0006917
EISBN: 978-1-62708-395-9
... Abstract While there are many fracture mechanisms that can lead to the failure of a plastic component, environmental stress cracking (ESC) is recognized as one of the leading causes of plastic failure. This article focuses on unpacking the basic concepts of ESC to provide the engineer...
Abstract
While there are many fracture mechanisms that can lead to the failure of a plastic component, environmental stress cracking (ESC) is recognized as one of the leading causes of plastic failure. This article focuses on unpacking the basic concepts of ESC to provide the engineer with a better understanding of how to evaluate and prevent it. It then presents factors that affect and contribute to the susceptibility of plastic to ESC: material factors, chemical factors, stress, and environmental factors. The article includes the collection of background information to understand the circumstances surrounding the failure, a fractographic evaluation to assess the cracking, and analytical testing to evaluate the material, design, manufacturing, and environmental factors.
Book Chapter
Stress-Corrosion Cracking of Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006545
EISBN: 978-1-62708-210-5
... Abstract In high-strength aluminum alloys, stress-corrosion cracking (SCC) is known to occur in ordinary atmospheres and aqueous environments. This article discusses the mechanisms of SCC in aluminum alloys, providing information on two main types of SCC models: those of anodic dissolution...
Abstract
In high-strength aluminum alloys, stress-corrosion cracking (SCC) is known to occur in ordinary atmospheres and aqueous environments. This article discusses the mechanisms of SCC in aluminum alloys, providing information on two main types of SCC models: those of anodic dissolution based on electrochemical theory and those that involve the stress-sorption theory of mechanical fracture. It reviews three different categories of experiments used to compare SCC performance of candidate materials for service. The categories are tests on statically loaded smooth samples, tests on statically loaded precracked samples, and tests using slowly straining samples. The article describes SCC susceptibility and ratings of SCC resistance for high-strength wrought aluminum products, such as 2xxx, 5xxx, and 7xxx series alloys, aluminum-lithium alloys, and 7xxx alloys containing copper.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001342
EISBN: 978-1-62708-173-3
... Abstract This article discusses four types of defects in materials that have been fusion welded and that have been the focus of much attention because of the magnitude of their impact on product quality. These include hot cracks, heat-affected zone (HAZ) microfissures, cold cracks, and lamellar...
Abstract
This article discusses four types of defects in materials that have been fusion welded and that have been the focus of much attention because of the magnitude of their impact on product quality. These include hot cracks, heat-affected zone (HAZ) microfissures, cold cracks, and lamellar tearing. These defects, all of which manifest themselves as cracks, are characteristic of phenomena that occur at certain temperature intervals specific to a given alloy. The article presents selected alloy 625 compositions used in weldability study.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006785
EISBN: 978-1-62708-295-2
... Abstract Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms...
Abstract
Stress-corrosion cracking (SCC) is a form of corrosion and produces wastage in that the stress-corrosion cracks penetrate the cross-sectional thickness of a component over time and deteriorate its mechanical strength. Although there are factors common among the different forms of environmentally induced cracking, this article deals only with SCC of metallic components. It begins by presenting terminology and background of SCC. Then, the general characteristics of SCC and the development of conditions for SCC as well as the stages of SCC are covered. The article provides a brief overview of proposed SCC propagation mechanisms. It discusses the processes involved in diagnosing SCC and the prevention and mitigation of SCC. Several engineering alloys are discussed with respect to their susceptibility to SCC. This includes a description of some of the environmental and metallurgical conditions commonly associated with the development of SCC, although not all, and numerous case studies.
Book Chapter
Corrosion Fatigue and Stress-Corrosion Cracking in Metallic Biomaterials
Available to PurchaseSeries: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005654
EISBN: 978-1-62708-198-6
... Abstract This article describes mechanical/electrochemical phenomena related to in vivo degradation of metals used for biomedical applications. It discusses the properties and failure of these materials as they relate to stress-corrosion cracking (SCC) and corrosion fatigue (CF). The article...
Abstract
This article describes mechanical/electrochemical phenomena related to in vivo degradation of metals used for biomedical applications. It discusses the properties and failure of these materials as they relate to stress-corrosion cracking (SCC) and corrosion fatigue (CF). The article presents the factors related to the use of surgical implants and their deterioration in the body environment, including biomedical aspects, chemical environment, and electrochemical fundamentals needed for characterizing CF and SCC. It provides a discussion on the use of metallic biomaterials in surgical implant applications, such as orthopedic, cardiovascular surgery, and dentistry. It addresses key issues related to the simulation of an in vivo environment, service conditions, and data interpretation. These include the frequency of dynamic loading, electrolyte chemistry, applicable loading modes, cracking mode superposition, and surface area effects. The article explains the fundamentals of CF and SCC, and presents the test findings from laboratory, in vivo, and retrieval studies.
Book Chapter
Modeling of Quenching, Residual-Stress Formation, and Quench Cracking
Available to PurchaseSeries: ASM Handbook
Volume: 22B
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.hb.v22b.a0005530
EISBN: 978-1-62708-197-9
... neglecting and incorporating material transformation effects, used to predict residual stresses are reviewed. The article also explains the various aspects of models used to prevent cracking during heating and quenching. cooling rate crack resistance heat-transfer coefficient quench cracking...
Abstract
This article provides information on the boundary conditions that must be applied to model the heat-transfer coefficient (HTC) in a component being cooled. It describes the historical perspective of various experiments to determine the HTCs. Computational fluid dynamics codes have also been used to predict the HTCs around a part. The article provides information on the various modeling studies used to predict cooling rates in a component. The prediction of residual stresses by validation and optimization of residual stress models is also discussed. Several techniques, such as models neglecting and incorporating material transformation effects, used to predict residual stresses are reviewed. The article also explains the various aspects of models used to prevent cracking during heating and quenching.
Book Chapter
Effect of Crack Shape on Fatigue Crack Growth
Available to PurchaseBook: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002359
EISBN: 978-1-62708-193-1
... Abstract This article summarizes the aspects of crack shape and irregularity that are relevant to fatigue and fracture of surface cracks. It discusses the nature of three-dimensional surface cracks and variables that influence crack shape. These variables include the grain size, residual...
Abstract
This article summarizes the aspects of crack shape and irregularity that are relevant to fatigue and fracture of surface cracks. It discusses the nature of three-dimensional surface cracks and variables that influence crack shape. These variables include the grain size, residual stresses, texture, loading mode, environment, and crack coalescence. Measurement of crack shapes or aspect ratios during fatigue crack growth can be performed by a number of techniques. The article describes the estimation of the stress-intensity factor for arbitrarily-shaped cracks and failure prediction methods for arbitrarily-shaped flaws.
Image
Published: 01 January 2002
Image
One mechanism of intergranular cracking. (a) Schematic showing cracking due...
Available to PurchasePublished: 01 January 1987
Fig. 75 One mechanism of intergranular cracking. (a) Schematic showing cracking due to grain-boundary sliding. Arrows along a grain boundary indicate that this boundary underwent sliding. (b) Cracks and voids in Al-5.1 Mg that was stress rupture tested at 260 °C (500 °F). Electrolytically
More
Image
Thermal fatigue cracking of a spur gear. (a) Radial cracking due to frictio...
Available to PurchasePublished: 01 January 2002
Fig. 31 Thermal fatigue cracking of a spur gear. (a) Radial cracking due to frictional heat against the thrust face. 0.4×. (b) Progression of thermal fatigue produced by the frictional heat. 1.5×
More
Image
Examples of (a) pull cracking and (b) push cracking caused by quenching. So...
Available to PurchasePublished: 30 September 2014
Fig. 59 Examples of (a) pull cracking and (b) push cracking caused by quenching. Source: Ref 52
More
1