1-20 of 100 Search Results for

crack-tip opening displacement

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003104
EISBN: 978-1-62708-199-3
... the steels is permitted, but care must be taken to avoid cracking. The martensitic steels are always tempered. Nominal compositions for the heat-resistant, Cr-Mo steels are provided in Table 4 . The steels range from 1 2 to 12% Cr and 1 2 to 1% Mo. Product forms include...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005435
EISBN: 978-1-62708-196-2
... Abstract This article assesses the evolution of martensite modeling in the changing materials engineering environment. It describes the physics of displacive transformations using Ginzburg-Landau theory, microstructure representation, dynamics and simulations, density functional theory, and...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003243
EISBN: 978-1-62708-199-3
... IHE ). However, it is difficult to determine precisely when the “no growth” criterion is met. Crack tip opening displacement should also be monitored. Corrosion reactions accompanied by expansion in volume may occur at the crack tip. This changes the opening displacement and increases the load, thus...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 January 1987
DOI: 10.31399/asm.hb.v12.a0001832
EISBN: 978-1-62708-181-8
... fracture is often the least damaged because it is the newest crack area. Corrodents often do not penetrate to the crack tip, and this region remains relatively clean. The visual macroanalysis will often reveal secondary cracks that have propagated only partially through a cracked member. These part...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003231
EISBN: 978-1-62708-199-3
... Cracks and pores 10–20 Steel welds Cracks and pores 10–20 Forgings Cracks 20 Laps 20 Metal rollings Seams 10–20 Die castings Surface porosity 3–10 Cold shuts 10–20 Metal-permanent mold casting Shrinkage porosity 3–10 Carbide-tipped cutting tools Poor braze 2–10...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004006
EISBN: 978-1-62708-185-6
... alloy 718 and other superalloys are sometimes used for dummy blocks, where use of these alloys often results in extremely long tool life. Mandrels are generally made of either H11 or H13, regardless of the material being extruded. Mandrel tips and inserts for the extrusion of aluminum are commonly...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003183
EISBN: 978-1-62708-199-3
... forging force can save considerable material and machining time required to generate the holes. In addition to versatility provided by multiple rams, these presses can be used for forward or reverse extrusion. Lack of flash at the parting line decreases stress-corrosion cracking in forging alloys...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005292
EISBN: 978-1-62708-187-0
... remelted. Additionally, when the die ages and becomes old, the die surface will begin to have small cracks (i.e., heat checking). This will affect the casting appearance. When a die does not close tightly, flash in the die parting line area will generate. Most of the biscuit, gate system, and flash can...
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.9781627081801
EISBN: 978-1-62708-180-1
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.9781627081757
EISBN: 978-1-62708-175-7
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.9781627081733
EISBN: 978-1-62708-173-3
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.9781627081610
EISBN: 978-1-62708-161-0
Series: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.9781627081764
EISBN: 978-1-62708-176-4
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.9781627081627
EISBN: 978-1-62708-162-7
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006774
EISBN: 978-1-62708-295-2
... directly visible at the macroscale. Fractures that are initially ductile then transition to brittle (case 4) are usually associated with rising-load ductile tearing, or the initial ductility may be inferred by transverse strain at the crack tip. The size of the plastic zone may be microscale in this case...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006767
EISBN: 978-1-62708-295-2
... article introduces the stress analysis of bodies containing cracklike imperfections and the topic of fracture mechanics. The fracture mechanics approach is based on the analysis of the crack tip stress and strain field. The initial approach proposed by George Irwin, the father of fracture mechanics, used...
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003224
EISBN: 978-1-62708-199-3
... offset. This is called Mode I, or opening mode, and is shown schematically in Fig. 3 . For materials that are homogeneous, isotropic, and linearly elastic (i.e., obey Hooke's law), any stress component in the vicinity of the crack tip is given by the following equation: (Eq 6) σ i j...
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005405
EISBN: 978-1-62708-196-2
... displacement (CTD) is comprised of crack tip opening (CTOD) and sliding (CTSD) components. Constants F and M govern the long crack growth rate for a given R -ratio, and U (*) and H (*) are functions of their arguments. Each regime of fatigue crack formation and growth outlined in Eq 1 should be...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003241
EISBN: 978-1-62708-199-3
... Abstract This article reviews the various types of mechanical testing methods, including hardness testing; tension testing; compression testing; dynamic fracture testing; fracture toughness testing; fatigue life testing; fatigue crack growth testing; and creep, stress-rupture, and stress...
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006779
EISBN: 978-1-62708-295-2
... characterization and quantification of the stress field at the crack tip in terms of the stress-intensity factor ( K ) in linear elastic fracture mechanics (LEFM) as well as crack-tip opening displacement (CTOD) or J- integral in elastic-plastic fracture mechanics (EPFM). The application of LEFM is restricted...