Skip Nav Destination
Close Modal
Search Results for
crack geometry
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1168 Search Results for
crack geometry
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 2002
Fig. 21 Stress intensity factors (in tension, k I ) for various crack geometries. (a) Surface crack. (b) Embedded crack. (c) Through-thickness crack. (d) Flaw shape parameter ( Q ). Source: Ref 6
More
Image
Published: 01 January 1996
Fig. 5 Some typical load/crack geometries and their corresponding stress-intensity parameters. (a) Tunnel crack, (b) penny crack, (c) wedge opened crack, (d) eccentrically loaded crack
More
Image
Published: 15 May 2022
Fig. 16 Stress-intensity factors (in tension, K I ) for various crack geometries. (a) Surface crack. (b) Embedded crack. (c) Through-thickness crack. (d) Flaw shape parameter ( Q )
More
Image
Published: 01 December 1998
Fig. 4 Some typical load-crack geometries and their corresponding stress-intensity parameters; (a) tunnel crack, (b) penny crack, (c) wedge opened crack, (d) eccentrically loaded crack
More
Image
Published: 15 January 2021
Fig. 21 Stress-intensity factors (in tension, K I ) for various crack geometries. (a) Surface crack. (b) Embedded crack. (c) Through-thickness crack. (d) Flaw shape parameter ( Q ). Source: Ref 6
More
Image
Published: 15 June 2019
Fig. 6 Stress-intensity factors (in tension, K I ) for various crack geometries. (a) Surface crack. (b) Embedded crack. (c) Through-thickness crack. (d) Flaw shape parameter ( Q ). Source: Ref 10
More
Image
in Modeling of Quenching, Residual-Stress Formation, and Quench Cracking
> Metals Process Simulation
Published: 01 November 2010
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002421
EISBN: 978-1-62708-193-1
... Abstract The stress-intensity concept is based on the parameter that quantifies the stresses at a crack tip. This article summarizes some stress-intensity factors for various crack geometries commonly found in structural components. Through-the-thickness cracks may be located in the middle...
Abstract
The stress-intensity concept is based on the parameter that quantifies the stresses at a crack tip. This article summarizes some stress-intensity factors for various crack geometries commonly found in structural components. Through-the-thickness cracks may be located in the middle of a plate; at the edge of a plate; or at the edge of a hole inside a plate. The article discusses uniform farfield loading in terms of point loading of a center crack and point loading of an edge crack. It tabulates the correction factors for stress intensity at shallow surface cracks under tension. Farfield tensile loading and part-through crack in a finite plate are also discussed. The article concludes with a discussion on through-the-thickness crack and part-through crack in a pressurized cylinder.
Series: ASM Handbook
Volume: 22A
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.hb.v22a.a0005419
EISBN: 978-1-62708-196-2
... important aspects of crack-growth modeling: loading environment and crack geometry. fatigue crack growth fracture mechanics crack growth rate crack-growth modeling crack geometry UNDERSTANDING FATIGUE CRACK GROWTH is critical for the safe operation of many structural components and has seen...
Abstract
Understanding fatigue crack growth is critical for the safe operation of many structural components. This article reviews the standard fracture mechanics and methods to determine the crack growth rate for a material and loading condition experimentally. It also addresses the two most important aspects of crack-growth modeling: loading environment and crack geometry.
Image
Published: 01 December 2009
Fig. 19 Neural network (NN) for stress-intensity factor (SIF) calculation. “Type” refers to crack type, including center-cracked geometry, double-cracked geometry, and single-cracked geometry; w , crack width; a , crack length; and σ applied , applied stress. Source: Ref 32
More
Image
Published: 01 January 1996
Fig. 3 Two radically dissimilar patterns of Stage II crack growth in weldments. The crack geometry and load path in the groove welded butt joint (top left) is similar to the center cracked panel for which the stress intensity factor increases with crack growth; whereas, the crack geometry
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002378
EISBN: 978-1-62708-193-1
... strain fracture toughness, denoted as K IC . It presents formulas for the stress-intensity parameter as a function of crack size, crack shape, applied stress (or load), and geometry of load application. applied stress crack shape crack size cracks fracture mechanics plane strain fracture...
Abstract
The concepts of fracture mechanics are basic ideas for developing the methods of predicting the load-carrying capabilities of structures and components containing cracks. This article provides an introduction to the methodology for computing the onset of fracture and describes plane strain fracture toughness, denoted as K IC . It presents formulas for the stress-intensity parameter as a function of crack size, crack shape, applied stress (or load), and geometry of load application.
Image
Published: 01 January 1996
Fig. 8 Alternative crack growth specimen geometries. (a) Single-edge-crack bending specimen. (b) Double-edge crack tension specimen. (c) Single-edge-crack tension specimen. (d) Surface-crack tension specimen
More
Image
Published: 01 January 2000
Fig. 8 Alternative crack growth specimen geometries. (a) Single-edge-crack bending specimen. (b) Double-edge-crack tension specimen. (c) Single-edge-crack tension specimen. (d) Surface-crack tension specimen
More
Image
Published: 01 January 1996
Fig. 13 The uniqueness in the variation of maximum stress-intensity factor of irregular cracks with the square root of the area, for various crack geometries
More
Image
Published: 01 January 1996
Image
Published: 30 August 2021
Fig. 6 Effect of weld geometry on solidification cracking susceptibility. Reprinted from Ref 10 with permission from The Lincoln Electric Company
More
Image
Published: 01 January 2000
Fig. 18 Specimen geometries for crack growth measurements under high-frequency resonance excitation. (a) Center-cracked specimen. (b) Single-edge-cracked specimen. (c) Double-edge-cracked specimen. (d) Single-edge-cracked specimen. (e) Center-cracked specimen. R , fatigue stress ratio
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002367
EISBN: 978-1-62708-193-1
... favor long crack growth and the conditions, which favor crack nucleation are contrasted. The article presents experimental data, which is used to show the effect of weldment geometry on fatigue resistance. Several useful geometry classification systems are compared. The article analyzes a computer model...
Abstract
This article examines the factors influencing the fatigue behavior of an individual weldment, using extensive experimental data and a computer model, which simulates the fatigue resistance of weldments. It discusses the process of fatigue in weldments. The service conditions, which favor long crack growth and the conditions, which favor crack nucleation are contrasted. The article presents experimental data, which is used to show the effect of weldment geometry on fatigue resistance. Several useful geometry classification systems are compared. The article analyzes a computer model, which is employed to investigate the behavior of two hypothetical weldments, namely, a discontinuity-containing weldment and a discontinuity-free weldment.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002359
EISBN: 978-1-62708-193-1
... FRACTURES in engineering applications ( Ref 1 ) occur mostly from surface or internal three-dimensional cracks, which generally propagate in all directions and often have irregular shapes. Such shapes may not strictly have an elliptical or circular geometry, although such an approximation is often practiced...
Abstract
This article summarizes the aspects of crack shape and irregularity that are relevant to fatigue and fracture of surface cracks. It discusses the nature of three-dimensional surface cracks and variables that influence crack shape. These variables include the grain size, residual stresses, texture, loading mode, environment, and crack coalescence. Measurement of crack shapes or aspect ratios during fatigue crack growth can be performed by a number of techniques. The article describes the estimation of the stress-intensity factor for arbitrarily-shaped cracks and failure prediction methods for arbitrarily-shaped flaws.
1