Skip Nav Destination
Close Modal
Search Results for
countergravity low-pressure vacuum process
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-13 of 13 Search Results for
countergravity low-pressure vacuum process
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005265
EISBN: 978-1-62708-187-0
... vacuum process, countergravity low-pressure inert atmosphere process, countergravity pressure vacuum process, supported shell technique, loose sand vacuum process, and countergravity centrifugal casting process. countergravity centrifugal casting low-pressure countergravity casting mold filling...
Abstract
This article discusses the general principles and advantages of countergravity mold filling. It details several production implementations that use differential pressure countergravity mold filling methods, namely the countergravity low-pressure air process, countergravity low-pressure vacuum process, countergravity low-pressure inert atmosphere process, countergravity pressure vacuum process, supported shell technique, loose sand vacuum process, and countergravity centrifugal casting process.
Image
Published: 01 December 2008
Fig. 2 Schematic showing the steps of the countergravity low-pressure vacuum process. (a) Metal is melted in a vacuum chamber that is then flooded with argon. (b) A preheated mold is introduced into a separate upper chamber that is evacuated and then flooded with an equal pressure of argon
More
Image
Published: 01 December 2008
Fig. 1 Schematic diagram of the countergravity low-pressure air process steps. (a) Preheated investment shell mold is placed into a casting chamber. (b) Chamber with mold is positioned and lowered into a molten-metal source. Vacuum is applied to the chamber, and mold filling is complete. (c
More
Image
Published: 01 December 2008
Fig. 3 Schematic showing, steps of the countergravity low-pressure inert atmosphere process. (a) Metal is melted in a vacuum or inert atmosphere, the chamber is filled with argon at +102 kPa (+1 atmt), and a hot mold is introduced into an independent mold chamber. (b) The mold chamber
More
Image
Published: 01 December 2008
is placed atop the chamber, and casting operations proceed as described for the countergravity low-pressure air process in Fig. 1.
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005187
EISBN: 978-1-62708-187-0
... in the chassis and suspension systems of automobiles and light trucks. Squeeze casting was the first variation on HPDC to prove capable of structural aluminum castings, such as steering knuckles. Now, the low-pressure casting process and its variations, such as vacuum riserless casting/pressure riserless casting...
Abstract
This article discusses the categories and subcategories of shape casting processes. These include single-use processes such as sand, plaster, ceramic, and graphite molding; essentially unpressurized multiuse processes, such as permanent mold; and high-pressure metal mold methods, such as die casting, squeeze casting, and semisolid processing. The article contains tables that compare some of the typical capabilities of shape casting processes.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005287
EISBN: 978-1-62708-187-0
... sand, chemically bonded sand, plaster mold, and investment casting. Important variations include molding and pattern distinctions such as lost foam (evaporative pattern), shell and V-mold, and process derivatives such as squeeze casting, low-pressure permanent mold, vacuum riserless casting...
Abstract
Aluminum casting alloys are the most versatile of all common foundry alloys and generally have the highest castability ratings. This article provides an overview of the common methods of aluminum shape casting. These include gravity casting, die casting, sand casting, lost foam casting, shell mold casting, plaster casting, investment casting, permanent mold casting, squeeze casting, semisolid forming, centrifugal casting, and pressure die casting. The article presents several different factors on which the selection of a casting process depends. It discusses gating and risering principles in casting. The article concludes with information on premium engineered castings that provide higher levels of quality and reliability than in conventionally produced castings.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006519
EISBN: 978-1-62708-207-5
... for the production of castings with extremely thin sections, knife edges and sharp detail. Because hot molds improve metal fluidity, metal can be poured at a comparatively low temperature. Additionally, vacuum, pressure, and centrifugal casting techniques used in the investment process facilitate the flow of metal...
Abstract
Investment casting, in which molten metal is poured into hot molds, allows for the production of aluminum parts with extremely thin sections, knife edges and sharp detail. This article describes the various steps in the investment casting process, including patternmaking and dimensioning, the design and manufacture of shell molds, melting and casting methods, and postcasting operations such as knockout, core removal, and cleaning. It also addresses a wide range of design considerations, discusses casting defects, and provides several design examples.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005255
EISBN: 978-1-62708-187-0
... viscosities make them easy to compound, inject, assemble into clusters, and melt out without cracking the thin ceramic shell molds. These properties allow waxes to be injected at low temperatures and pressures, and this, combined with their lack of abrasiveness, leads to lower tooling costs. Additives...
Abstract
This article reviews the pattern materials used in investment casting, which can be loosely grouped into waxes and plastics. The patternmaking process, pattern tooling, and pattern and cluster assembly are described. The article also describes the manufacture of ceramic shell molds and cores, detailing the binders and other materials used, as well as the formulation and control of slurries. Methods for pattern removal, mold firing, melting, casting, postcasting treatment, and inspection are explained. After presenting design recommendations for investment castings, the article concludes with information on applications and special versions of the investment casting process.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006533
EISBN: 978-1-62708-207-5
... volume of the aluminum castings poured in sand molds is lower than high-pressure die casting and permanent molds. However, high-integrity components such as engine blocks, cylinder heads, and helicopter gearboxes for aerospace and automotive castings make the process high value. Figure 1 shows...
Abstract
Sand casting processes are typically classified according to the type of binder present in the molding sand mixture. This article discusses common sand casting processes and design considerations related to shape, gating, feeding, and pattern making methods. It describes the composition of sand and binder normally used, and provides information on the aluminum casting alloys produced. The article discusses precision sand casting and sand reclamation, and includes information on health and safety considerations.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009015
EISBN: 978-1-62708-187-0
.... Permanent Mold Casting Permanent mold processes involve the production of castings by pouring molten metal into permanent metal molds using gravity, low pressure, vacuum or centrifugal pressure. Simple reusable cores are usually made of metal. More complex cores are made of sand, plaster, ceramics...
Abstract
This article provides a general introduction on casting processes and design techniques. It discusses the process steps and methods of the main categories of shape casting methods, namely, expendable molds with permanent patterns, expendable molds with expendable patterns, and metal or permanent mold processes. The article lists the general guidelines of geometry in casting design. It describes the three separate contractions that are a result of cooling: liquid-liquid contraction, solid-solid contraction, and liquid-solid contraction. Factors influencing the solidification sequence of simple shapes, such as T-sections, X-sections, and L-sections, are discussed. The article also presents an overview of geometric factors that influence heat transfer and transport phenomena. It concludes with a description of the structure and properties of castings.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005186
EISBN: 978-1-62708-187-0
... introduced. Aluminum-bronze in regular production in the United States. Early 1900s—First patent for low-pressure permanent mold casting process issued to England's E.H. Lake. 1901—American Steel Foundries (St. Louis) produces the first centrifugal cast rail wheels. 1903—The Wright Brothers' first...
Abstract
Casting is one of the most economical and efficient methods for producing metal parts. In terms of scale, it is well suited for everything from low-volume, prototype production runs to filling global orders for millions of parts. Casting also affords great flexibility in terms of design, readily accommodating a wide range of shapes, dimensional requirements, and configuration complexities. This article traces the history of metal casting from its beginnings to the current state, creating a timeline marked by discoveries, advancements, and influential events. It also lists some of the major markets where castings are used.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.9781627081993
EISBN: 978-1-62708-199-3