1-20 of 1156

Search Results for corrosion-resistant tool steels

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005976
EISBN: 978-1-62708-168-9
... Abstract This article provides a discussion on heat treating practices, namely, carburizing, normalizing, annealing, stress relieving, preheating, austenitizing, quenching, tempering, and nitriding for various grades of mold and corrosion-resistant tool steels. It details the characteristics...
Image
Published: 01 October 2014
Fig. 4 Tempering behavior of corrosion resistant tool steels; AISI 420 and the nitrogen alloyed M333 (AISI 420 Mod). Source: Ref 3 , 6 , 7 , 8 More
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006130
EISBN: 978-1-62708-175-7
... Abstract This article is a comprehensive collection of tables that list the nominal chemical composition of common powder metallurgy (PM) high-alloy tool steels, namely, PM high-speed, cold working, and corrosion-resistant tool steels. chemical composition cold working tool steel...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006129
EISBN: 978-1-62708-175-7
... on the dissolution of all carbides, the stoichiometric carbon content is a function of the austenitizing temperature. The relevant steels are separated into three alloy groups: high-speed, cold-working, and corrosion-resistant tool steels, for each of which different assumptions must be made. A common assumption...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003152
EISBN: 978-1-62708-199-3
... steel and cermets. Compared to tool steels, cemented carbides are harder and more wear resistant, but also exhibit lower fracture resistance and thermal conductivities than tool steels. Cermets, on the other hand, are more wear resistant than cemented carbides, but may not be as tough. The performance...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003218
EISBN: 978-1-62708-199-3
... the properties of typical CVD coating materials for wear and corrosion resistance. Coatings for the cutting tool industry utilize CVD processes, particularly TiC coatings for cemented tungsten carbide tools and TiN and carbonitride coatings for high-speed tool steels and cemented carbide tools. Nearly all...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005946
EISBN: 978-1-62708-168-9
... steels for (plastic) molding Non-corrosion-resistant mold steels: P- (including new variations) as well as H-, 6F- and L6-type Corrosion-resistant steels: 420-type (including new variations) Due to the diverse applications, selection of the proper tool material for a given application often...
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004213
EISBN: 978-1-62708-184-9
... . These steels have inadequate alloy additions to be considered corrosion resistant and undergo a variety of corrosion failure modes/mechanisms in underground environments, including general corrosion, pitting corrosion, and stress-corrosion cracking (SCC). The terms general corrosion and pitting corrosion...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003219
EISBN: 978-1-62708-199-3
... implantation in the context of research and development applications. corrosion-resistant coatings ion implantation ion plating physical vapor deposition sputtering thermal evaporation wear-resistant coatings PHYSICAL VAPOR DEPOSITION (PVD) processes involve the formation of a coating...
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006119
EISBN: 978-1-62708-175-7
..., which can result in the appearance of surface rust. Surface contamination with less-noble foreign materials can also lead to loss of corrosion resistance. Stainless steel parts that have not been sintered to a density high enough to eliminate interconnected porosity at the surface are susceptible...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003116
EISBN: 978-1-62708-199-3
... and corrosion resistance. This article provides a detailed account of such difficulties encountered in the fabrication of wrought stainless steel by forming, forging, cold working, machining, heat treating, and joining processes. Stainless steels are subjected to various heat treatments such as annealing...
Image
Published: 01 January 2005
the necessary mechanical properties. Hot forging produces an oxide scale that has to be removed mechanically or chemically, if the stainless steel is to be corrosion resistant (i.e., be passivated). The water in the quench-tempering bath was found to be high in chloride, which was retained within the oxidized More
Book Chapter

Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006417
EISBN: 978-1-62708-192-4
... Most surface treatments are employed to increase surface hardness and/or wear resistance, minimize adhesion (reduce friction), or improve the corrosion resistance of the tool steel base. Carburizing The processes of case hardening and carburizing are of limited use in tool steel applications...
Book Chapter

By Brian Allen
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005164
EISBN: 978-1-62708-186-3
... in such a way as to maintain the coating integrity and preserve the original purpose of the coating. Most coatings commonly used on sheet steel substrates have corrosion resistance as their primary function, although appearance is often important as well, especially for the organic coatings. Coatings can...
Book Chapter

By Mitchell R. Dorfman
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005745
EISBN: 978-1-62708-171-9
..., structural steel coatings, transfer chutes, bake ware, and vacuum systems. Here, the intrinsic properties of polymers—such as high chemical resistance, high impact resistance, and high abrasion resistance—are used to advantage. Metals Processing Industries Mold Coatings Mold coatings for foundries...
Book Chapter

Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003148
EISBN: 978-1-62708-199-3
..., cemented carbides, magnetic materials, low-expansion alloys, and high-speed tool steels. cobalt cobalt alloys corrosion-resistant alloys high-temperature alloys mechanical properties mining special-purpose alloys superalloys uses of cobalt wear-resistant alloys COBALT is a tough silvery...
Book Chapter

Series: ASM Handbook
Volume: 4A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v04a.a0005775
EISBN: 978-1-62708-165-8
... by chemical vapor deposition Diffused silicon 925–1040 1700–1900 25 μm–1 mm (1–40 mils) 30–50 Low-carbon steels For corrosion and wear resistance, atmosphere control is critical. Chromizing by chemical vapor deposition Diffused chromium 980–1090 1800–2000 25–50 μm (1–2 mils) Low-carbon steel...
Book Chapter

By A.T. Santhanam, P. Tierney, J.L. Hunt
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001104
EISBN: 978-1-62708-162-7
... Abstract Cemented carbides belong to a class of hard, wear-resistant, refractory materials in which the hard carbide particles are bound together, or cemented, by a soft and ductile metal binder. The performance of cemented carbide as a cutting tool lies between that of tool steel and cermets...
Book Chapter

By Dongyang Li
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006382
EISBN: 978-1-62708-192-4
... the resistance to abrasive wear to a large degree, for example, for tool steels ( Ref 15 ). Commonly used elements include chromium, vanadium, molybdenum, tungsten, niobium, boron, titanium, nitrogen, and so on. These elements react with carbon and iron to form harder carbides, borides, and nitrides, resulting...
Book Chapter

Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002123
EISBN: 978-1-62708-188-7
... Abstract Cast cobalt alloys were developed to bridge the gap between high-speed steels and carbides. Although comparable in room-temperature hardness to high-speed steel tools, cast cobalt alloy tools retain their hardness to a much higher temperature and can be used at higher cutting speeds...