Skip Nav Destination
Close Modal
By
Tapio Mäntylä, Mikko Uusitalo
By
Kevin J. Kovaleski, David F. Pulley
By
R.G. Buchheit, A.E. Hughes
By
Barbara A. Shaw, Wilford W. Shaw, Daniel P. Schmidt
By
Gary Fisher, Tonya Wolfe
By
John A. Beavers, Neil G. Thompson
By
S.R. Freeman
Search Results for
corrosion-resistant coatings
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1389
Search Results for corrosion-resistant coatings
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Chromate and Chromate-Free Conversion Coatings
> Corrosion: Fundamentals, Testing, and Protection
Published: 01 January 2003
Fig. 9 Corrosion resistance measured as parallel coating resistance, R c , from electrochemical impedance spectroscopy experiments of conversion-coated 2024-T3 exposed to aerated 0.5 M NaCl determined after aging in air. Source: Ref 88
More
Image
Effect of corrosion-protection coatings on the lightning-strike resistance ...
Available to PurchasePublished: 01 January 2001
Fig. 15 Effect of corrosion-protection coatings on the lightning-strike resistance of fasteners for composites. (a) Fastener with corrosion protection finish, struck by 100,000 A. Heavy damage to composite. (b) Bare fastener struck by 100,000 A. No damage to composite
More
Book Chapter
Corrosion of Thermal Spray Coatings at High Temperatures
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0004050
EISBN: 978-1-62708-183-2
... of corrosion-resistant coatings in boilers. The effects of high-temperature corrosion in waste incinerators are detailed. The article also examines the effects of erosion-corrosion in fluidized bed combustion boilers. erosion corrosion fluidized bed combustion boilers hot corrosion high temperature...
Abstract
This article describes the specific features and mechanisms of oxidation in thermal spray coatings. It discusses the two forms of hot corrosion in sulfur-containing combustion, namely high-temperature hot corrosion and low-temperature hot corrosion. The article reviews the behavior of corrosion-resistant coatings in boilers. The effects of high-temperature corrosion in waste incinerators are detailed. The article also examines the effects of erosion-corrosion in fluidized bed combustion boilers.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001462
EISBN: 978-1-62708-173-3
... Abstract Thermal spray coatings (TSCs) are surface coatings engineered to provide wear-, erosion-, abrasion-, and corrosion-resistant coatings for original equipment manufacture and for the repair and upgrading of in-service equipment. This article presents an overview of five thermal spray...
Abstract
Thermal spray coatings (TSCs) are surface coatings engineered to provide wear-, erosion-, abrasion-, and corrosion-resistant coatings for original equipment manufacture and for the repair and upgrading of in-service equipment. This article presents an overview of five thermal spray processes and the specific flame and arc spray processes used to preserve large steel components and structures. It describes the TSC selection guide and an industrial process procedure guide for applying aluminum and zinc TSCs onto steel.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003694
EISBN: 978-1-62708-182-5
... Abstract This article provides information on the factors influencing the selection of the proper corrosion-resistant coating system. It focuses on the proper execution of surface preparation and the available surface preparation methods. The preparation process includes the removal of visible...
Abstract
This article provides information on the factors influencing the selection of the proper corrosion-resistant coating system. It focuses on the proper execution of surface preparation and the available surface preparation methods. The preparation process includes the removal of visible contaminants, removal of invisible contaminants, and roughening of the surface. Solvent or chemical washing, steam cleaning, hand tool cleaning, power tool cleaning, water blasting, and abrasive blast cleaning, are some preparation methods discussed. The article describes the most common application techniques of coating as well as the equipment used. An overview of some of the most common coating inspection points and inspection equipment is also provided.
Book Chapter
CVD and PVD Coatings
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003685
EISBN: 978-1-62708-182-5
... deposited is extensive and covers almost any coating requirement. The article provides a table of some corrosion-resistant vapor deposited materials. It concludes with an overview of the applications of CVD and PVD coatings and a discussion on coatings for graphite, the aluminum coating of steel, and alloy...
Abstract
Vapor-deposition processes fall into two major categories, namely, physical vapor deposition (PVD) and chemical vapor deposition (CVD). This article describes major deposition processes such as sputtering, evaporation, ion plating, and CVD. The list of materials that can be vapor deposited is extensive and covers almost any coating requirement. The article provides a table of some corrosion-resistant vapor deposited materials. It concludes with an overview of the applications of CVD and PVD coatings and a discussion on coatings for graphite, the aluminum coating of steel, and alloy coatings for aircraft turbines, marine turbines, and industrial turbines.
Book Chapter
Chemical Vapor Deposition and Related Processes
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003218
EISBN: 978-1-62708-199-3
... the properties of typical CVD coating materials for wear and corrosion resistance. Coatings for the cutting tool industry utilize CVD processes, particularly TiC coatings for cemented tungsten carbide tools and TiN and carbonitride coatings for high-speed tool steels and cemented carbide tools. Nearly all...
Abstract
Chemical vapor deposition (CVD) involves the formation of a coating by the reaction of the coating substance with the substrate. Serving as an introduction to CVD, the article provides information on metals, ceramics, and diamond films formed by the CVD process. It further discusses the characteristics of different pack cementation processes, including aluminizing, siliconizing, chromizing, boronizing, and multicomponent coating.
Book Chapter
Physical Vapor Deposition
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003219
EISBN: 978-1-62708-199-3
... implantation in the context of research and development applications. corrosion-resistant coatings ion implantation ion plating physical vapor deposition sputtering thermal evaporation wear-resistant coatings PHYSICAL VAPOR DEPOSITION (PVD) processes involve the formation of a coating...
Abstract
Physical vapor deposition (PVD) coatings are harder than any metal and are used in applications that cannot tolerate even microscopic wear losses. This article describes the three most common PVD processes: thermal evaporation, sputtering, and ion plating. It also discusses ion implantation in the context of research and development applications.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004162
EISBN: 978-1-62708-184-9
... by the vehicle manufacturer to control the environment in which a motor vehicle is operated, the general strategy is to provide a cost-effective and production-friendly combination of corrosion-resistant materials and barrier coatings. The likely futility of forecasting corrosion lifetimes of materials...
Abstract
This article discusses the commonly encountered forms of automotive body corrosion. The corrosion forms include general or uniform corrosion, cosmetic or under-film corrosion, galvanic corrosion, crevice corrosion, poultice or under-deposit corrosion, and pitting corrosion. Corrosion-resistant sheet metals, such as electrogalvanized steel, hot dip galvanized steel, and hot dip galvannealed steel, are reviewed. The article provides information on the paint and sealant systems for corrosion control in automotive body applications.
Book Chapter
Finishing Systems for Naval Aircraft
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004125
EISBN: 978-1-62708-184-9
... non-chromated pre-treatments high-solids technology touch-up paints adhesive films paint application equipment EXTERIOR COATINGS provide corrosion protection, camouflage, erosion resistance, markings, electrical grounding, electromagnetic shielding, as well as other specialized properties...
Abstract
This article describes the protective coatings technology used in naval aircrafts. It reviews the future needs and trends of the protective coatings technology based on advancing technology, environmental concerns, and operational requirements. The article discusses the standard finishing systems for aircrafts: the surface pretreatment system, primer, topcoat, advanced-performance topcoat, self-priming topcoat, and specialty coatings. It presents safe compliant solutions to environmental problems associated with the protective coatings technology. These solutions include the use of environmental regulations and hazardous materials, nonchromated pretreatments, waterborne technology, high-solids technology, and touch-up paints. The article also deals with the use of electrodeposition coatings, powder coatings, adhesive films, paint application equipment, and non-chromated sealants in the protective coatings technology.
Book Chapter
Chromate and Chromate-Free Conversion Coatings
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003679
EISBN: 978-1-62708-182-5
... Abstract Chromate conversion coatings (CCCs) are primarily used to improve adhesion of subsequently applied organic coatings or to impart corrosion resistance during atmospheric exposure. This article describes the factors that affect the formation of CCCs. It provides information...
Abstract
Chromate conversion coatings (CCCs) are primarily used to improve adhesion of subsequently applied organic coatings or to impart corrosion resistance during atmospheric exposure. This article describes the factors that affect the formation of CCCs. It provides information on the processing sequence, morphology, composition, and properties of CCCs. The article discusses the electrochemical impedance spectroscopy approach used for evaluating conversion coatings. The test methods for various CCCs properties are also reviewed. The article examines the various coatings associated with chromate-free conversion. These include: titanium and zirconium fluorocomplexes; cerium-base, manganese-base, cobalt-base, and molybdate-base conversion coatings; hydrotalcite coatings; and organic coatings.
Book Chapter
Corrosion of Metallic Coatings
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004107
EISBN: 978-1-62708-184-9
... Abstract A sacrificial coating applied to a steel substrate can add 20 years or more of life to the substrate, depending on its thickness and composition. Different techniques to apply sacrificial coatings offer various characteristics that contribute to corrosion resistance. This article...
Abstract
A sacrificial coating applied to a steel substrate can add 20 years or more of life to the substrate, depending on its thickness and composition. Different techniques to apply sacrificial coatings offer various characteristics that contribute to corrosion resistance. This article discusses thermal spray, hotdipping, and electroplating processes used to apply coatings in steel structures. It describes the corrosion attributes of the resulting coatings and discusses the methods of protecting steel from corrosion using aluminum and zinc coatings.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005745
EISBN: 978-1-62708-171-9
... ) is successful in withstanding the slagging corrosion and offers the slight retardation of freezing that is desired. This coating functions successfully for ferrous, bronze, aluminum, and several noble metal cast products. High-Temperature Wear-Resistant Coatings High-temperature wear-resistant coatings...
Abstract
This article reviews the use of thermal spray polymer coatings as a replacement for paints. It discusses the applications of the thermal spray forming process. The article also provides information on the applications of thermal spray in metal processing, textile and plastics, and ceramic and glass manufacturing industries.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003688
EISBN: 978-1-62708-182-5
... would dewet from the steel when the sheet exits the coating bath, and this would lead to either uncoated areas (voids) or a very nonuniform coating thickness. A uniform coating thickness is very important to achieve good corrosion resistance. Second, without the alloy layer, the coating would...
Abstract
This article describes the basic principles, processing steps, and benefits of continuous hot dip coatings. It provides useful information on the principal types of coatings applied in the hot-dip process. The types of coatings include galvanized coatings, galvannealed coatings, 55Al-Zn coating, 95Zn-Al coating, and aluminized coatings.
Book Chapter
Protective Overlays and Coatings Used in Oil Sands
Available to PurchaseBook: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005712
EISBN: 978-1-62708-171-9
... Abstract This article focuses on coatings and overlays adopted for use as wear- and corrosion-resistant materials in oil sand processing. It describes the most common application processes for oil sand coatings and overlays, including welding, high-velocity oxyfuel thermal spray, laser cladding...
Abstract
This article focuses on coatings and overlays adopted for use as wear- and corrosion-resistant materials in oil sand processing. It describes the most common application processes for oil sand coatings and overlays, including welding, high-velocity oxyfuel thermal spray, laser cladding, and vacuum brazing. The article provides information on the selection of overlays and materials such as chromium-carbide-base overlays and tungsten carbide metal-matrix composites.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003687
EISBN: 978-1-62708-182-5
... contact resistance, the corrosion performance of the coating- substrate system must be carefully considered to avoid future degradation. Metallic coatings can be very useful in providing optimal properties for a part not obtainable if it were fabricated from a single material. The overall properties...
Abstract
This article discusses the various factors that affect the corrosion performance of electroplated coatings. It describes the effects of environment and the deposition process on substrate coatings. The article provides a discussion on the electrochemical techniques capable of predicting the corrosion performance of a plated part. It reviews the designs of coating systems for optimal protection of the substrate. The article also discusses controlled weathering tests and accelerated tests used to predict and determine the relative durability of the coating.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006521
EISBN: 978-1-62708-207-5
... do not provide as high a quality of coating as the current process. However, in applications where the conversion coating/primer/topcoat is treated as a “system” for testing purposes (i.e., the bare salt spray corrosion resistance is not considered important), this type of coating could...
Abstract
Chemical conversion coatings are adherent surface layers of low-solubility oxide, phosphate, chromate, and chromate-free compounds produced by the reaction of suitable reagents with the metallic surface. This article provides an overview on chromate-free coatings, along with coverage on the processes of low-solubility oxide, phosphate, and chromate conversion coating. Some applications using chemical conversion coatings on various aluminum alloys are given in a table. The article also provides information on the advantages and disadvantages of chromate conversion coatings. It concludes a discussion on organic-based coatings.
Book Chapter
External Corrosion of Oil and Natural Gas Pipelines
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004213
EISBN: 978-1-62708-184-9
... quadrant of pipeline shown after coating removal and abrasive cleaning Because of the relatively poor corrosion resistance of line pipe steels in underground environments, a combination of mitigation strategies consisting of coatings and cathodic protection (CP) is required. In this article...
Abstract
This article describes the mechanisms of differential corrosion cells corrosion, microbiologically influenced corrosion, and stray direct current corrosion. It discusses the most common causes and contributing factors for corrosion and stress-corrosion cracking, as well as prevention, mitigation, detection, and repair processes.
Book Chapter
Analysis and Prevention of Corrosion-Related Failures
Available to PurchaseSeries: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003549
EISBN: 978-1-62708-180-1
... in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive...
Abstract
This article provides an overview of the electrochemical nature of corrosion and analyzes corrosion-related failures. It describes corrosion failure analysis and discusses corrective and preventive approaches to mitigate corrosion-related failures of metals. These include: change in the environment; change in the alloy or heat treatment; change in design; use of galvanic protection; use of inhibitors; use of nonmetallic coatings and liners; application of metallic coatings; use of surface treatments, thermal spray, or other surface modifications; corrosion monitoring; and preventive maintenance.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003692
EISBN: 978-1-62708-182-5
.... Corrosion protection measures such as the use of more corrosion-resistant alloys, sheet or rubber coatings and linings, or fiberglass lay-ups, can be employed for these applications. The coating systems discussed in this article are categorized by the generic type of binder or resin and are grouped...
Abstract
This article discusses the coating systems categorized by the generic type of binder or resin and grouped according to the curing or hardening mechanism inherent within that generic type. It focuses on the properties, advantages, and limitations of various autooxidative cross-linked resins, thermoplastic resins, and cross-linked thermosetting resins. The autooxidative cross-linked resins include alkyd resins and epoxy esters. The article examines the two types of coatings based on thermoplastic resins: those deposited by evaporation of a solvent, commonly called lacquers, and those deposited by evaporation of water, a class of coatings called water-borne coatings. The coatings that chemically cross link by copolymerization, including epoxies, unsaturated polyesters, urethanes, high-temperature curing silicones, and phenolic linings, are also described.
1