Skip Nav Destination
Close Modal
By
Gerhardus H. Koch, Michiel P.H. Brongers, Neil G. Thompson, Y. Paul Virmani, Joe H. Payer
Search Results for
corrosion maintenance
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 706 Search Results for
corrosion maintenance
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1996
Fig. 22 Typical corrosion fatigue test cell. Maintenance of the equilibrium oxygen concentration is ensured by cascading the solution in the circulation rig.
More
Image
Published: 01 January 2006
Fig. 5 Shipboard coatings are a major maintenance driver for corrosion control. Navy ships use a variety of organic coatings for interior and exterior applications.
More
Image
Published: 01 January 2000
Fig. 24 Typical corrosion fatigue test cell. Maintenance of the equilibrium oxygen concentration is ensured by cascading the solution in the circulation rig.
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004131
EISBN: 978-1-62708-184-9
... maintenance on military systems. Failure prediction techniques, namely, the equivalent pre-crack size approach, life-cycle cost modeling and simulation, and holistic life-prediction methodology are also discussed. reliability aging full-scale structural testing corrosion maintenance service life...
Abstract
Aging is a process where the structural and/or functional integrity of components will be continuously degraded by exposure to the environmental conditions under which they are operated. This article discusses aging mechanisms in various components of military systems such as structural parts, engines, and subsystems. It describes the aging management processes such as full-scale structural testing and practical life-enhancement methods. The article reviews control and prevention systems such as usage and health monitoring systems necessary to provide effective corrosion maintenance on military systems. Failure prediction techniques, namely, the equivalent pre-crack size approach, life-cycle cost modeling and simulation, and holistic life-prediction methodology are also discussed.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004119
EISBN: 978-1-62708-184-9
... Abstract This article reviews corrosion problems in the U.S. Department of Defense (DoD) and discusses management and maintenance aspects of the practices that address the cost and readiness. It describes the plans to institute corrosion prevention and control strategies under DoD directives...
Abstract
This article reviews corrosion problems in the U.S. Department of Defense (DoD) and discusses management and maintenance aspects of the practices that address the cost and readiness. It describes the plans to institute corrosion prevention and control strategies under DoD directives in engineering design, material selection, and fabrication processes for new acquisitions. The article also suggests a long-term strategy to reduce the cost of corrosion control.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004169
EISBN: 978-1-62708-184-9
...], or that the airline operator have a plan to address corrosion problems and reduce their severity between inspections. “Each certificate holder is primarily responsible for the airworthiness of its aircraft … the performance of the maintenance … in accordance with its manual and the regulations …” [Title 14—Code...
Abstract
This article describes the commonly observed forms of airplane corrosion, namely: general corrosion, exfoliation corrosion, pitting corrosion, microbiologically induced corrosion, galvanic corrosion, filiform corrosion, crevice corrosion, stress-corrosion cracking, and fretting. It discusses the factors influencing airplane corrosion from the manufacturing perspective: design, manufacturing, and service-related factors. The article explains the collection of corrosion data and provides an overview of the implementation and evolution of airline corrosion prevention and control programs and directions being considered in the design for corrosion prevention of airplanes.
Book Chapter
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003707
EISBN: 978-1-62708-182-5
... the information was not readily available or could not be released because of company policies. In this case, information from publicly available industry records on operation and maintenance cost was obtained, and, with the assistance of industry experts, corrosion-related costs were estimated. The industry...
Abstract
This article first describes the two methods used in the 1998 U.S. corrosion cost study. In the first method, the cost was determined by summing the costs for corrosion control methods and contract services. In the second, the cost of corrosion was first determined for specific industry sectors and then extrapolated to calculate a national total corrosion cost. The article then reports the results and conclusions of the study. It concludes with information on corrosion prevention strategies.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004123
EISBN: 978-1-62708-184-9
... of corrosion-protective coatings, general corrosion-protection maintenance, and appropriate fixes and procedures that can be implemented by soldiers in-field to stop continued corrosion of armament equipment. coatings protective coatings quality control general corrosion protection maintenance...
Abstract
This article provides a discussion on the design, in-process, storage, and in-field problems and their considerations associated with armament corrosion with examples. Design considerations include geometry, material selection, assembly, pretreatment, coatings, and working and storage environments. In-process corrosion concerns include processing locations, in-process storage of parts, time between processing steps, and quality control of each processing step. The article also discusses the analysis of the in-field corrosion of the finished product, including physical environments, repair of corrosion-protective coatings, general corrosion-protection maintenance, and appropriate fixes and procedures that can be implemented by soldiers in-field to stop continu