Skip Nav Destination
Close Modal
Search Results for
corrosion in water
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1791 Search Results for
corrosion in water
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004147
EISBN: 978-1-62708-184-9
... of approaches for mitigating stress-corrosion cracking in LWRs, in categories of water chemistry, operating guidelines, new alloys, design issues, and stress mitigation. It concludes with a discussion on the irradiation effects of irradiation on corrosion of zirconium alloys in LWR environments. corrosion...
Abstract
This article examines the understanding of persistent material changes produced in stainless alloys during light water reactor (LWR) irradiation based on the fundamentals of radiation damage and existing experimental measurements. It summarizes the overall trends and correlations for irradiation-assisted stress-corrosion cracking. The article addresses the effects of various radiation factors on corrosion. These include radiation-induced segregation at grain boundaries, radiation hardening, mode of deformation, radiation creep relaxation, and radiolysis. The article discusses a variety of approaches for mitigating stress-corrosion cracking in LWRs, in categories of water chemistry, operating guidelines, new alloys, design issues, and stress mitigation. It concludes with a discussion on the irradiation effects of irradiation on corrosion of zirconium alloys in LWR environments.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004101
EISBN: 978-1-62708-184-9
... Abstract This article focuses on the internal corrosion of iron and copper in potable water. It tabulates the corrosion and water-quality problems caused by materials in contact with drinking water. The article provides a theoretical description of the reduction-oxidation reactions in water...
Abstract
This article focuses on the internal corrosion of iron and copper in potable water. It tabulates the corrosion and water-quality problems caused by materials in contact with drinking water. The article provides a theoretical description of the reduction-oxidation reactions in water to analyze the causes of corrosion of metals in contact with water. It discusses the Langelier saturation index and the Larson index for determining corrosion in potable water systems. The article describes the two major ways of mitigation against corrosion in potable water systems. The first is to line the pipe surface physically such that water and dissolved oxygen cannot reach the metal surface and the second is to add chemical inhibitors to alter water chemistry.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004102
EISBN: 978-1-62708-184-9
... Abstract This article describes the corrosion mechanisms, challenges, and control methods in service water distribution systems. It provides a discussion on typical designs and water qualities for distribution systems used in fossil-fueled and nuclear power plants. The article also explains...
Abstract
This article describes the corrosion mechanisms, challenges, and control methods in service water distribution systems. It provides a discussion on typical designs and water qualities for distribution systems used in fossil-fueled and nuclear power plants. The article also explains the techniques for controlling corrosion in service water systems.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004132
EISBN: 978-1-62708-184-9
... a synergistic approach incorporating feed chemistry control, reactor design modifications, and intelligent materials selection, for mitigating degradation of SCWO systems. corrosion degradation supercritical water oxidation wastewater sludge THE PRACTICALITY of supercritical water oxidation (SCWO...
Abstract
Supercritical water oxidation (SCWO) is an effective process for the destruction of military and industrial wastes including wastewater sludge. This article discusses the unique properties of supercritical water and lists the main technological advantages of SCWO. For many waste streams, corrosion continues to be one of the central challenges to the full development of the SCWO technology. The article presents a summary of selected materials exposed to various environments as well as the observed form of corrosion in a table. It also illustrates the necessity to adopt a synergistic approach incorporating feed chemistry control, reactor design modifications, and intelligent materials selection, for mitigating degradation of SCWO systems.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004133
EISBN: 978-1-62708-184-9
... Abstract This article describes the control of water chemistry in the steam cycle of a power plant for achieving corrosion control, deposition prevention, and higher cycle efficiency. It discusses the materials requirements of the components exposed to supercritical water in supercritical (SC...
Abstract
This article describes the control of water chemistry in the steam cycle of a power plant for achieving corrosion control, deposition prevention, and higher cycle efficiency. It discusses the materials requirements of the components exposed to supercritical water in supercritical (SC) and ultrasupercritical (USC) power plants. These components include high-pressure steam piping and headers, superheater and reheater tubing, water wall tubing in the boiler, high-and intermediate-pressure rotors, rotating blades, and bolts in the turbine section. The article reviews the boiler alloys, used in SC and USC boilers, such as ferritic steels, austenitic steels, and nickel-base alloys. It provides information on the materials used in turbine applications such as ferritic rotor steels, turbine blade alloys, and bolting materials. The article explains various factors influencing steamside corrosion in SC power plants. It also deals with the role of overall efficiency in the USC power generation.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004154
EISBN: 978-1-62708-184-9
... Abstract This article briefly describes water and steam chemistry, which influence the effect of corrosion in boilers. The appropriate control measures to prevent corrosion in boilers are also presented. The article provides a discussion on the common causes of fluid-side corrosion such as flow...
Abstract
This article briefly describes water and steam chemistry, which influence the effect of corrosion in boilers. The appropriate control measures to prevent corrosion in boilers are also presented. The article provides a discussion on the common causes of fluid-side corrosion such as flow-accelerated corrosion, oxygen pitting, chelant corrosion, caustic corrosion, acid corrosion, organic corrosion, phosphate corrosion, hydrogen damage, and corrosion-assisted cracking.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004145
EISBN: 978-1-62708-184-9
...-prediction approaches, for predicting cracking kinetics in BWRs. The article provides information on several EAC mitigation techniques for BWR components, namely material solutions, stress solutions, and environmental solutions. boiling water reactor corrosion environmentally assisted cracking...
Abstract
This article focuses on the environmentally assisted cracking (EAC) of structural materials in boiling water reactors (BWRs), reactor pressure vessels, core internals, and ancillary piping. It discusses the effects of water chemistry on materials degradation, mitigation approaches, and their impact on aging management programs. The article reviews the effects of materials, environment, and stress factors on the cracking susceptibility of ferritic and austenitic structural alloys in BWRs. It describes the methods, such as data-based life-prediction approaches and mechanisms-informed life-prediction approaches, for predicting cracking kinetics in BWRs. The article provides information on several EAC mitigation techniques for BWR components, namely material solutions, stress solutions, and environmental solutions.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004146
EISBN: 978-1-62708-184-9
... Abstract This article discusses the main materials and water chemistry characteristics of the primary and secondary water circuits of a pressurized water reactor (PWR). It reviews the corrosion issues of PWR materials and the influence of corrosion and fouling on primary and secondary circuit...
Abstract
This article discusses the main materials and water chemistry characteristics of the primary and secondary water circuits of a pressurized water reactor (PWR). It reviews the corrosion issues of PWR materials and the influence of corrosion and fouling on primary and secondary circuit radiation fields. The article explains the primary side intergranular stress corrosion cracking (IGSCC) in different materials, namely, nickel-base alloys, high-strength nickel-base alloys, low-strength austenitic stainless steels, and high-strength stainless steels. The secondary side corrosion in steam generator including denting, pitting, intergranular attack and IGSCC is also discussed. The article examines laboratory studies that have resulted in models and computer codes for evaluating and predicting intergranular corrosion, and considers the remedial actions for preventing or arresting intergranular corrosion. It concludes with information on the external bolting corrosion in nuclear power reactors.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004148
EISBN: 978-1-62708-184-9
... Abstract The components used in light water reactors (LWR) often remain in contact with the primary coolant, whose typical temperatures and pressures are highly aggressive, therefore, initiating corrosion in most of the alloys. This article describes the corrosion behavior of zirconium alloys...
Abstract
The components used in light water reactors (LWR) often remain in contact with the primary coolant, whose typical temperatures and pressures are highly aggressive, therefore, initiating corrosion in most of the alloys. This article describes the corrosion behavior of zirconium alloys in water and heat flow conditions that causes irradiation on the zirconium alloy assemblies. It discusses the effect of irradiation on the microstructure and morphology of cladded linings. The article describes the impact of metallurgical parameters on the oxidation resistance of zirconium alloys. It concludes with a discussion on LWR coolant chemistry and corrosion of fuel rods in reactors.
Book Chapter
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003650
EISBN: 978-1-62708-182-5
.... The ASTM International and NACE International standards that are directly or indirectly applicable to simulated service corrosion testing in water are tabulated. The article also describes the effects of variable concentrations of dissolved carbonates, such as calcium, magnesium, and/or sodium, in water...
Abstract
Simulated service testing includes exposures of either structural components or test specimens in environments that are representative of many general service situations. This article discusses the selection criteria of test specimens and methods of assessing the corrosion effects. The ASTM International and NACE International standards that are directly or indirectly applicable to simulated service corrosion testing in water are tabulated. The article also describes the effects of variable concentrations of dissolved carbonates, such as calcium, magnesium, and/or sodium, in water on corrosion.
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003701
EISBN: 978-1-62708-182-5
... Abstract The corrosion process that occurs in industrial systems is often difficult to discern until extensive deterioration has occurred. For boilers to function properly, the incoming water must be processed to meet the water quality required for the boiler. This article discusses...
Abstract
The corrosion process that occurs in industrial systems is often difficult to discern until extensive deterioration has occurred. For boilers to function properly, the incoming water must be processed to meet the water quality required for the boiler. This article discusses pretreatment methods of the incoming water and preboiler corrosion protection methods. It analyzes internal treatment and condensate treatment of boilers. The article discusses three types of cooling systems: once-through systems, open recirculating systems, and closed recirculating systems. The corrosion processes which occur in water-recirculating systems and the effect of dissolved gases, temperature, pH, suspended solids, dissolved salts, and scale deposition on corrosivity of water, are also reviewed. The article also considers anodic and cathodic inhibitors and the control of corrosion in municipal water systems.
Image
Published: 01 January 2006
Fig. 16 Corrosion of hot water line after insulation was degraded by water intrusion. See the article “Corrosion Control for Military Facilities” in this Volume.
More
Image
Published: 01 January 2006
Image
Published: 01 December 1998
Fig. 2 Effect of pH on corrosion of steel in aerated water. Corrosion rates are normalized to a solution containing 1 mL O 2 per liter of water. To estimate corrosion rates at other concentration, multiply values derived from this graph by the oxygen concentration in mL/L.
More
Image
Published: 01 January 1987
Fig. 54 Stress-corrosion fractures in a Cu-30Zn brass tested in distilled water at a potential of E = 0 V SCE (SCE, saturated calomel electrode). Brass containing 0.002% As fails by predominantly intergranular decohesion (a), and one with 0.032% As fails by a combination of cleavage
More
Image
Published: 01 January 1987
Fig. 55 Stress-corrosion fracture in a Cu-30Zn brass with 0.032% As tested in water containing 5 × 10 −3 % sulfur dioxide at a potential of E = 0.05 V SCE . The periodic marks are believed to be the result of a stepwise mode of crack propagation. Source: Ref 176
More
Image
Published: 01 January 2002
Image
Published: 01 January 2002
Fig. 29 Thermal fatigue plus liquid-ash corrosion on water walls leads to circumferential grooving. The cross section in an axial plane nearly parallel to the tube axis shows the deep fingerlike penetrations into the wall. Etched with nital. 210×. Courtesy of Riley Stoker Corp.
More
Image
Published: 01 January 2002
Fig. 4 Corrosion failure of 100-year-old riveted steel water transmission main. Courtesy of S. Paul, CorrTech, Inc.
More
Image
Published: 01 January 2002
1