Skip Nav Destination
Close Modal
Search Results for
corrosion compatibility
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 660 Search Results for
corrosion compatibility
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003043
EISBN: 978-1-62708-200-6
..., including corrosion compatibility, fastener materials and strength, head configurations, importance of clamp-up, interference fit fasteners, lightning strike protection, blind fastening, and sensitivity to hole quality. Types of fusion bonding are presented, namely, thermal welding, friction welding...
Abstract
The structural efficiency of a composite structure is established by its joints and assembly. Adhesive bonding, mechanical fastening, and fusion bonding are three types of joining methods for polymer-matrix composites. This article provides information on surface treatment and the applications of adhesive bonding. It discusses the types of adhesives, namely, epoxy adhesives, epoxy-phenolic adhesives, condensation-reaction PI adhesives, addition-reaction PI adhesives, bismaleimide adhesives, and structural adhesives. The article provides information on fastener selection considerations, including corrosion compatibility, fastener materials and strength, head configurations, importance of clamp-up, interference fit fasteners, lightning strike protection, blind fastening, and sensitivity to hole quality. Types of fusion bonding are presented, namely, thermal welding, friction welding, electromagnetic welding, and polymer-coated material welding.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003427
EISBN: 978-1-62708-195-5
... Abstract This article focuses on the factors to be considered for selecting fasteners for joining carbon fiber composites. These considerations include corrosion compatibility, fastener materials, strength, stiffness, head configurations, importance of clamp-up, hole fit, and lightning...
Abstract
This article focuses on the factors to be considered for selecting fasteners for joining carbon fiber composites. These considerations include corrosion compatibility, fastener materials, strength, stiffness, head configurations, importance of clamp-up, hole fit, and lightning protection.
Book Chapter
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006541
EISBN: 978-1-62708-183-2
... corrosion of bare metals. corrosion seawater marine atmosphere industrial atmosphere bare metal THIS GUIDE rates the compatibility of dissimilar structural materials joined together for service in seawater, marine atmosphere, or industrial atmosphere. The first and second materials...
Abstract
This guide rates the compatibility of dissimilar structural materials joined together for service in seawater, marine atmosphere, or industrial atmosphere. It contains a table that indicates the material code and most generally effective surface treatment typically used to reduce corrosion of bare metals.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003840
EISBN: 978-1-62708-183-2
..., and silicon carbide. Minimizing corrosion of refractories and ceramics requires proper materials selection in terms of chemical, thermal, and mechanical compatibility; proper installation and fabrication; and proper control of the process in which the material is functioning. Acid-base reactions play...
Abstract
This article provides an overview of the environmental performance of the most commonly used nonmetallic materials, including elastomers, plastics, thermosetting resins, resin-matrix composites, organic coatings, concrete, refractories, and ceramics. It also discusses the applications and uses of these materials.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003139
EISBN: 978-1-62708-199-3
... and cause severe galvanic corrosion. Metals that combine active potentials with higher hydrogen overvoltages, such as aluminum, zinc, cadmium, and tin, are much less damaging, although not fully compatible with magnesium. Data were compiled in tests at Kure Beach, NC, in which sheets of dissimilar...
Abstract
This article discusses the effects of heavy metal impurities, environmental factors, the surface condition (such as as-cast, treated, and painted), and the assembly practice on the corrosion resistance of a magnesium or a magnesium alloy part. It provides information on stress-corrosion cracking and galvanic corrosion of magnesium alloys, as well as the surface protection of magnesium assemblies achieved by inorganic surface treatments.
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006546
EISBN: 978-1-62708-210-5
... Abstract Aluminum and its alloys are highly corrosion resistant, protected by a self-healing oxide film that effectively passivates the underlying surface. This article examines the various processes by which the protective layer can be breached and the types of corrosion that can occur...
Abstract
Aluminum and its alloys are highly corrosion resistant, protected by a self-healing oxide film that effectively passivates the underlying surface. This article examines the various processes by which the protective layer can be breached and the types of corrosion that can occur. It describes pitting, galvanic, and atmospheric corrosion as well as stress-corrosion cracking, corrosion fatigue, and erosion corrosion. It also covers intergranular, exfoliation, filiform, deposition, and crevice corrosion and special cases of corrosion in soils, seawater, and automotive coolant systems. The article provides an extensive amount of data as well as information on coatings, claddings, and cathodic protection methods; the effects of composition, microstructure, and surface treatments; and the compatibility of aluminum with food and various household and industrial chemicals.
Image
Published: 01 January 2005
carbon steel screw (anode). Control: Select compatible materials; preferably, use the same metals. Avoid large-cathode-to-small-anode areas. Corrosion form and mechanism Metallurgically influenced corrosion, galvanic corrosion, crevice corrosion Material Stainless steel, carbon steel
More
Book Chapter