Skip Nav Destination
Close Modal
Search Results for
corrosion
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 6213 Search Results for
corrosion
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005652
EISBN: 978-1-62708-198-6
... Abstract This article discusses the mechanisms of metal and alloy biocompatibility. It provides information on early testing and experience with metals in medical device applications. The article describes the response of implant and particulate materials to severe corrosion. It provides...
Abstract
This article discusses the mechanisms of metal and alloy biocompatibility. It provides information on early testing and experience with metals in medical device applications. The article describes the response of implant and particulate materials to severe corrosion. It provides a description of metal binding and its effects on metabolic processes. Hypersensitive responses to metal ions are also reviewed. The article concludes with a discussion on the possible cancer-causing effects of metallic biomaterials.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004167
EISBN: 978-1-62708-184-9
... Abstract This article presents the fundamentals of stray-current corrosion caused by electric rail transit systems. It describes the various corrosion-control design elements for the electric rail system. These design elements include substation spacing and grounding, track and track slab...
Abstract
This article presents the fundamentals of stray-current corrosion caused by electric rail transit systems. It describes the various corrosion-control design elements for the electric rail system. These design elements include substation spacing and grounding, track and track slab design, and construction acceptance criteria. The impacts of the electric rail construction in underground utilities are discussed. Direct physical interferences, maintenance access encroachments, stray-current effects, and utility relocation design considerations, are discussed. The article also reviews construction issues such as funding, sequencing, and working clearances. It concludes with information on the post-construction monitoring and maintenance for stray-current corrosion control.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004147
EISBN: 978-1-62708-184-9
... for irradiation-assisted stress-corrosion cracking. The article addresses the effects of various radiation factors on corrosion. These include radiation-induced segregation at grain boundaries, radiation hardening, mode of deformation, radiation creep relaxation, and radiolysis. The article discusses a variety...
Abstract
This article examines the understanding of persistent material changes produced in stainless alloys during light water reactor (LWR) irradiation based on the fundamentals of radiation damage and existing experimental measurements. It summarizes the overall trends and correlations for irradiation-assisted stress-corrosion cracking. The article addresses the effects of various radiation factors on corrosion. These include radiation-induced segregation at grain boundaries, radiation hardening, mode of deformation, radiation creep relaxation, and radiolysis. The article discusses a variety of approaches for mitigating stress-corrosion cracking in LWRs, in categories of water chemistry, operating guidelines, new alloys, design issues, and stress mitigation. It concludes with a discussion on the irradiation effects of irradiation on corrosion of zirconium alloys in LWR environments.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 31 January 2025
DOI: 10.31399/asm.hb.v13b.a0007042
EISBN: 978-1-62708-183-2
... Abstract This article provides a discussion on the corrosion of industrial refractory materials and technical ceramics. These materials, which are used to minimize heat losses and provide a barrier between the vessel and its contents, are utilized in the metallurgical, chemical process, power...
Abstract
This article provides a discussion on the corrosion of industrial refractory materials and technical ceramics. These materials, which are used to minimize heat losses and provide a barrier between the vessel and its contents, are utilized in the metallurgical, chemical process, power generation, automotive, and aerospace industries. The article covers the fundamental principles of chemical corrosion of refractories and ceramics, and the use of thermodynamic calculations and kinetic models to evaluate the probability of the occurrence of corrosion-causing chemical reactions. It describes the corrosion resistance characteristics of specific classes of refractories and structural ceramics. The article also examines the prevention strategies that minimize corrosion failures of both classes of materials.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004208
EISBN: 978-1-62708-184-9
... Abstract This article provides information on biomedical aspects such as active biological responses and the chemical environment characterizing the internal physiological milieu, as well as electrochemical fundamentals needed for characterizing corrosion fatigue (CF) and stress-corrosion...
Abstract
This article provides information on biomedical aspects such as active biological responses and the chemical environment characterizing the internal physiological milieu, as well as electrochemical fundamentals needed for characterizing corrosion fatigue (CF) and stress-corrosion cracking (SCC). It discusses some of the mechanical and electrochemical phenomena related to the in vivo degradation of materials used for biomedical applications. These materials include stainless steels, cobalt and titanium-base alloy systems, and dental amalgam. The article addresses key issues related to the simulation of the in vivo environment, service conditions, and data interpretation. The factors influencing susceptibility to CF and SCC are reviewed. The article describes the testing methodology of CF and SCC. It also summarizes findings from laboratory testing, in vivo testing and retrieval studies related to CF and SCC.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005654
EISBN: 978-1-62708-198-6
... Abstract This article describes mechanical/electrochemical phenomena related to in vivo degradation of metals used for biomedical applications. It discusses the properties and failure of these materials as they relate to stress-corrosion cracking (SCC) and corrosion fatigue (CF). The article...
Abstract
This article describes mechanical/electrochemical phenomena related to in vivo degradation of metals used for biomedical applications. It discusses the properties and failure of these materials as they relate to stress-corrosion cracking (SCC) and corrosion fatigue (CF). The article presents the factors related to the use of surgical implants and their deterioration in the body environment, including biomedical aspects, chemical environment, and electrochemical fundamentals needed for characterizing CF and SCC. It provides a discussion on the use of metallic biomaterials in surgical implant applications, such as orthopedic, cardiovascular surgery, and dentistry. It addresses key issues related to the simulation of an in vivo environment, service conditions, and data interpretation. These include the frequency of dynamic loading, electrolyte chemistry, applicable loading modes, cracking mode superposition, and surface area effects. The article explains the fundamentals of CF and SCC, and presents the test findings from laboratory, in vivo, and retrieval studies.
Series: ASM Handbook
Volume: 11A
Publisher: ASM International
Published: 30 August 2021
DOI: 10.31399/asm.hb.v11A.a0006823
EISBN: 978-1-62708-329-4
... Abstract This article illustrates the use of the American Petroleum Institute (API) 579-1/ASME FFS-1 fitness-for-service (FFS) code (2020) to assess the serviceability and remaining life of a corroded flare knockout drum from an oil refinery, two fractionator columns affected by corrosion under...
Abstract
This article illustrates the use of the American Petroleum Institute (API) 579-1/ASME FFS-1 fitness-for-service (FFS) code (2020) to assess the serviceability and remaining life of a corroded flare knockout drum from an oil refinery, two fractionator columns affected by corrosion under insulation in an organic sulfur environment, and an equalization tank with localized corrosion in the shell courses in a chemicals facility. In the first two cases, remaining life is assessed by determining the minimum thickness required to operate the corroded equipment. The first is based on a Level 2 FFS assessment, while the second involves a Level 3 assessment. The last case involves several FFS assessments to evaluate localized corrosion in which remaining life was assessed by determining the minimum required thickness using the concept of remaining strength factor for groove-like damage and evaluating crack-like flaws using the failure assessment diagram. Need for caution in predicting remaining life due to corrosion is also covered.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006783
EISBN: 978-1-62708-295-2
... Abstract Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered...
Abstract
Corrosion is the electrochemical reaction of a material and its environment. This article addresses those forms of corrosion that contribute directly to the failure of metal parts or that render them susceptible to failure by some other mechanism. Various forms of corrosion covered are galvanic corrosion, uniform corrosion, pitting, crevice corrosion, intergranular corrosion, selective leaching, and velocity-affected corrosion. In particular, mechanisms of corrosive attack for specific forms of corrosion, as well as evaluation and factors contributing to these forms, are described. These reviews of corrosion forms and mechanisms are intended to assist the reader in developing an understanding of the underlying principles of corrosion; acquiring such an understanding is the first step in recognizing and analyzing corrosion-related failures and in formulating preventive measures.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006787
EISBN: 978-1-62708-295-2
... Abstract High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely...
Abstract
High-temperature corrosion can occur in numerous environments and is affected by various parameters such as temperature, alloy and protective coating compositions, stress, time, and gas composition. This article discusses the primary mechanisms of high-temperature corrosion, namely oxidation, carburization, metal dusting, nitridation, carbonitridation, sulfidation, and chloridation. Several other potential degradation processes, namely hot corrosion, hydrogen interactions, molten salts, aging, molten sand, erosion-corrosion, and environmental cracking, are discussed under boiler tube failures, molten salts for energy storage, and degradation and failures in gas turbines. The article describes the effects of environment on aero gas turbine engines and provides an overview of aging, diffusion, and interdiffusion phenomena. It also discusses the processes involved in high-temperature coatings that improve performance of superalloy.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
... Abstract This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope...
Abstract
This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope of microbial activity and the corrosion process. Then, various mechanisms that influence corrosion in microorganisms are discussed. The focus is on the incremental activities needed to assess the role played by microorganisms, if any, in the overall scenario. The article presents a case study that illustrates opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion failures.
Book Chapter
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006735
EISBN: 978-1-62708-210-5
... Abstract This datasheet provides information on key alloy metallurgy and processing effects on tensile properties and fracture toughness of alloy 7065. Strength-toughness minima for aluminum plate alloy 7065 are presented. aluminum alloy 7065 aluminum alloy plates corrosion resistant...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006546
EISBN: 978-1-62708-210-5
... Abstract Aluminum and its alloys are highly corrosion resistant, protected by a self-healing oxide film that effectively passivates the underlying surface. This article examines the various processes by which the protective layer can be breached and the types of corrosion that can occur...
Abstract
Aluminum and its alloys are highly corrosion resistant, protected by a self-healing oxide film that effectively passivates the underlying surface. This article examines the various processes by which the protective layer can be breached and the types of corrosion that can occur. It describes pitting, galvanic, and atmospheric corrosion as well as stress-corrosion cracking, corrosion fatigue, and erosion corrosion. It also covers intergranular, exfoliation, filiform, deposition, and crevice corrosion and special cases of corrosion in soils, seawater, and automotive coolant systems. The article provides an extensive amount of data as well as information on coatings, claddings, and cathodic protection methods; the effects of composition, microstructure, and surface treatments; and the compatibility of aluminum with food and various household and industrial chemicals.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006349
EISBN: 978-1-62708-179-5
... Abstract Cast irons provide excellent resistance to a wide range of corrosion environments when properly matched with that service environment. This article presents basic parameters to be considered before selecting cast irons for corrosion services. Alloying elements can play a dominant role...
Abstract
Cast irons provide excellent resistance to a wide range of corrosion environments when properly matched with that service environment. This article presents basic parameters to be considered before selecting cast irons for corrosion services. Alloying elements can play a dominant role in the susceptibility of cast irons to corrosion attack. The article discusses the various alloying elements, such as silicon, nickel, chromium, copper, and molybdenum, that enhance the corrosion resistance of cast irons. Cast irons exhibit the same general forms of corrosion as other metals and alloys. The article reviews the various forms of corrosions, such as graphitic corrosion, fretting corrosion, pitting and crevice corrosion, intergranular attack, erosion-corrosion, microbiologically induced corrosion, and stress-corrosion cracking. It discusses the four general categories of coatings used on cast irons to enhance corrosion resistance: metallic, organic, conversion, and enamel coatings.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006113
EISBN: 978-1-62708-175-7
... Abstract This article reviews various test methods used for evaluating the corrosion resistance of powder metallurgy stainless steels. These include immersion testing, salt spray testing, and electrochemical testing. The article discusses the factors that affect corrosion resistance of sintered...
Abstract
This article reviews various test methods used for evaluating the corrosion resistance of powder metallurgy stainless steels. These include immersion testing, salt spray testing, and electrochemical testing. The article discusses the factors that affect corrosion resistance of sintered stainless steels: compaction-related factors, sintering-related factors, and effects of alloy composition. Corrosion resistance data for sintered stainless steels is provided.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006059
EISBN: 978-1-62708-172-6
... Abstract This article provides information on the municipal wastewater system components such as piping, pump stations, headworks, clarifiers, aeration structures, digesters, biosolids dewatering equipment, and sludge stabilization. It explains the major corrosion damage mechanisms to which...
Abstract
This article provides information on the municipal wastewater system components such as piping, pump stations, headworks, clarifiers, aeration structures, digesters, biosolids dewatering equipment, and sludge stabilization. It explains the major corrosion damage mechanisms to which those component parts of the system are exposed. It presents useful guidelines for selecting and using protective coatings in municipal sewerage collection systems and water reclamation facilities in wastewater treatment plants. The article includes annotated flow diagrams of a wastewater collection system, wastewater treatment plants, and spreadsheets listing the most widely used generic coating systems by structure and substrate material. It concludes with a section on quality watchouts when selecting or using protective coatings in municipal wastewater systems.
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005976
EISBN: 978-1-62708-168-9
... Abstract This article provides a discussion on heat treating practices, namely, carburizing, normalizing, annealing, stress relieving, preheating, austenitizing, quenching, tempering, and nitriding for various grades of mold and corrosion-resistant tool steels. It details the characteristics...
Abstract
This article provides a discussion on heat treating practices, namely, carburizing, normalizing, annealing, stress relieving, preheating, austenitizing, quenching, tempering, and nitriding for various grades of mold and corrosion-resistant tool steels. It details the characteristics of various grades of mold and corrosion-resistant tool steels, including type P20, type P20Mod, AISI type 420, and AISI type 440B.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005735
EISBN: 978-1-62708-171-9
... Abstract This article focuses on noble and neutral coatings and the requirements necessary to achieve successful industrial applications. These include corrosion and wear control and repair applications in processing and chemical industries, and valve and downhole drilling applications...
Abstract
This article focuses on noble and neutral coatings and the requirements necessary to achieve successful industrial applications. These include corrosion and wear control and repair applications in processing and chemical industries, and valve and downhole drilling applications in the petrochemical industry. The article also discusses substrate chemistry and preparation; coating selection process and microstructure; sealing by chemical, post-heat treatments, and laser processing; and thermal spray process alternatives.
Book: Thermal Spray Technology
Series: ASM Handbook
Volume: 5A
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.hb.v05a.a0005709
EISBN: 978-1-62708-171-9
... Abstract Corrosion of marine- and land-based infrastructure is of major concern and its control forms an important objective. Thermal spray coatings (TSCs) are widely used for corrosion protection. This article focuses on two types of TSCs: cathodic or noble coatings and anodic or sacrificial...
Abstract
Corrosion of marine- and land-based infrastructure is of major concern and its control forms an important objective. Thermal spray coatings (TSCs) are widely used for corrosion protection. This article focuses on two types of TSCs: cathodic or noble coatings and anodic or sacrificial coatings. It describes the factors affecting the performance of sacrificial TSCs in atmospheric and immersion environments. The article provides information on the applications of sacrificial TSCs, non-sacrificial coatings, and sealants/top coats, and exemplifies the use of sacrificial TSCs on structures for corrosion protection.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005665
EISBN: 978-1-62708-198-6
... Abstract This article describes the corrosion resistance and ion release from main transition metallic bearings used as medical devices. It discusses the main issues associated with the in vivo presence of ions and their biocompatibility during the exposure of patients to different aspects...
Abstract
This article describes the corrosion resistance and ion release from main transition metallic bearings used as medical devices. It discusses the main issues associated with the in vivo presence of ions and their biocompatibility during the exposure of patients to different aspects of ion toxicity. These include ion concentration and accumulation in organisms, reactive oxygen species and oxidative stress, and carcinogenicity stimulated by the corrosion process and toxic ions release.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005653
EISBN: 978-1-62708-198-6
... Abstract This article reviews the corrosion interactions between biomedical alloys, in particular iron-base, titanium-base, and cobalt-base alloys, in complex geometries and in applications where there are significant cyclic stresses and potential for wear and fretting motion. It discusses...
Abstract
This article reviews the corrosion interactions between biomedical alloys, in particular iron-base, titanium-base, and cobalt-base alloys, in complex geometries and in applications where there are significant cyclic stresses and potential for wear and fretting motion. It discusses the nature of these metal surfaces and their propensity for corrosion reactions when combined with similar or different alloys in complex restrictive environments within the human body and under loading conditions. The article describes the factors that influence mechanically assisted crevice corrosion. It reviews the tests developed to investigate the aspects of mechanically assisted corrosion of metallic biomaterials: the scratch test and the in vitro fretting corrosion test.
1