Skip Nav Destination
Close Modal
By
Aleksei V Gershun, Peter M Woyciesjes
Search Results for
core design
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1219
Search Results for core design
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 12 September 2022
Book Chapter
Design for Economical Coring
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009019
EISBN: 978-1-62708-187-0
... Abstract Cores are separate shapes, of sand, metal, or plaster, that are placed in the mold to provide castings with contours, cavities, and passages. Cored holes should be designed simply as the intended function of the casting permits. This article describes the designing of casting...
Abstract
Cores are separate shapes, of sand, metal, or plaster, that are placed in the mold to provide castings with contours, cavities, and passages. Cored holes should be designed simply as the intended function of the casting permits. This article describes the designing of casting for the use of sand cores and to eliminate cores, with illustrations. It provides general rules for designing cored holes in investment castings. The article discusses the general principles of coremaking with illustrations. It concludes with a comparison between coring and drilling.
Image
An improved design that eliminated one core and eight ribs from a sand cast...
Available to PurchasePublished: 01 December 2008
Fig. 30 An improved design that eliminated one core and eight ribs from a sand casting. This resulted in a stronger, more economical part.
More
Image
Improved design that eliminated one core and eight ribs from a sand casting...
Available to PurchasePublished: 01 December 2008
Fig. 29 Improved design that eliminated one core and eight ribs from a sand casting. This resulted in a stronger, more economical part.
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009020
EISBN: 978-1-62708-187-0
... operations in design. The article describes the factors that control casting tolerances and presents specific tips for designing castings with uniform wall thickness, unequal sections, thin sections, economical coring, functional packaging, and core design. The article provides a framework for analyzing all...
Abstract
Casting offers a great amount of component design flexibility. This article discusses six casting design parameters that drive the geometry of casting design from a process standpoint. It provides information on the design of junctions and addresses considerations of secondary operations in design. The article describes the factors that control casting tolerances and presents specific tips for designing castings with uniform wall thickness, unequal sections, thin sections, economical coring, functional packaging, and core design. The article provides a framework for analyzing all manners of manufacturing as possible conversion candidates for casting. It concludes with a discussion on different metalcasting design projects.
Image
When designing a cored hole between ribs or in a web design, design the hol...
Available to PurchasePublished: 01 December 2008
Fig. 5 When designing a cored hole between ribs or in a web design, design the hole to be round or oval with rounded corners (right). Rectangular holes (left) create manufacturing difficulties.
More
Image
Full split aluminum core box designed to eliminate pasting of core halves. ...
Available to PurchasePublished: 01 December 2008
Fig. 4 Full split aluminum core box designed to eliminate pasting of core halves. From Steel Castings Handbook, 5th ed., Steel Founders' Society of America, 1980
More
Image
Although the design on the left is an acceptable design for a cored hole in...
Available to PurchasePublished: 01 December 2008
Fig. 6 Although the design on the left is an acceptable design for a cored hole in a highly stressed rib design, the design on the right is preferred to improve the service life of the component.
More
Image
Hypothetical casting showing core and mold problems if placement of cores i...
Available to PurchasePublished: 01 December 2008
Fig. 16 Hypothetical casting showing core and mold problems if placement of cores is not considered in the design of a casting. (a) Required patterns and mold sections for producing casting by original method. (b) Cores and related mold sections for original method. (c) Core box, and (d) core
More
Image
As originally designed, chaplets were required for core support. An improve...
Available to PurchasePublished: 01 December 2008
Fig. 16 As originally designed, chaplets were required for core support. An improved design eliminated the need for chaplets by incorporating two holes which provided adequate support by the core itself and permitted better venting of the core gas. These two holes were later tapped and plugged.
More
Book Chapter
Coremaking
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005244
EISBN: 978-1-62708-187-0
... the design considerations in coremaking to eliminate cores and compares coring with drilling. binders permanent mold castings investment castings coremaking drilling core sands core baking hot box process core coatings core setting coring CORES are separate shapes of sand that are placed...
Abstract
Cores are separate shapes of sand that are placed in the mold to provide castings with contours, cavities, and passages that are not otherwise practical or physically obtainable by the mold. This article describes the basic principles of coremaking and the types of core sands, binders, and additives used in coremaking. It discusses the curing of compacted cores by core baking and the hot box processes. The article provides an overview of the core coatings, assembling and core setting, coring of tortuous passages, and cores in permanent mold castings and investment castings. It also discusses the design considerations in coremaking to eliminate cores and compares coring with drilling.
Book Chapter
Design for Economical Sand Molding
Available to PurchaseBook: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009018
EISBN: 978-1-62708-187-0
... mold. Cores are necessary to complete the mold. General Design Factors Parting Lines The location of a parting line may be dictated either by the shape of the casting or by special requirements such as those illustrated in Fig. 4 . Parting the casting as shown in Fig. 4(a) to (e...
Abstract
This article begins with a schematic illustration of basic principles of sand molding. It discusses the general design factors, such as parting lines, location of radii, bosses and undercuts, and rib locations, of sand molding. The article schematically demonstrates alternative design solutions to molding and coring problems and describes the molding sequence. Draft refers to the amount of taper given to the sides of a pattern to enable it to be withdrawn easily from the mold. The article concludes with a simple example demonstrating the influence of a casting requirement on the direction of draft.
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005843
EISBN: 978-1-62708-167-2
.../Direct Current Reactors Alternating current reactor designs may be used up to several hundred kilohertz and may be water cooled or the dry type with open or encapsulated design ( Fig. 3 ). Iron core designs must take into account any dc component of current that may exist in the circuit. Higher...
Abstract
This article provides a discussion on transformers and reactors for induction heating. It presents information on the initial considerations in the selection process and the demands of power supply and load circuits. The article describes the types of transformers and reactors used in induction heating and maintenance operations. It also provides a discussion on load matching covering the following topics: initial considerations in the load-matching process, understanding the load circuit and the power supply circuit, selecting the desired operating point, adjusting the value of components, and testing the setup.
Series: ASM Handbook
Volume: 5B
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v05b.a0006035
EISBN: 978-1-62708-172-6
.... These reactors are the boiling water reactor (BWR) and pressurized water reactor (PWR). The article provides information on the loss-of-coolant accident (LOCA) identified as the design basis accident (DBA), which can rapidly de-water the core of an operating nuclear reactor. To avoid LOCA, both the BWR...
Abstract
Surface coatings are essential in all facilities that process nuclear materials or use nuclear fission for power generation. This article describes the coatings used in two basic types of Generation 3 nuclear reactor designs in the United States and their containment size. These reactors are the boiling water reactor (BWR) and pressurized water reactor (PWR). The article provides information on the loss-of-coolant accident (LOCA) identified as the design basis accident (DBA), which can rapidly de-water the core of an operating nuclear reactor. To avoid LOCA, both the BWR and the PWR include emergency core cooling systems. The article describes a DBA test and other coating performance parameters necessary for safety-related coating systems. It provides a detailed account of the selection criteria of coating types in a nuclear plant. The article concludes by highlighting protective coating strategies in Generation 3 Plants.
Book Chapter
Engine Coolants and Coolant System Corrosion
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004164
EISBN: 978-1-62708-184-9
... for heat exchangers (radiators and heater cores) or new engine/motor designs (fuel cell technology or heavy-duty engines with new exhaust gas recirculation (ERG) systems), will require engine coolant technology to continue to change to keep up with these improvements. Cooling System Functions...
Abstract
Advances in vehicle design and technology require engine coolant technology to minimize the degradation of nonmetals and prevent the corrosion of the metals in the cooling system. This article provides a detailed discussion on the functions, operation, materials, and major components of the cooling system. It discusses various forms of corrosion that occur in cooling systems, including uniform corrosion, galvanic corrosion, crevice corrosion, pitting corrosion, intergranular corrosion, erosion corrosion, and cavitation corrosion. The article presents information on engine coolant base components and inhibitors used for corrosion prevention. It reviews the coolant performance tests recommended by ASTM, SAE, and vehicle manufacturers. The article concludes with a description on the difference between light-duty automotive and heavy-duty diesel engine coolants.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001355
EISBN: 978-1-62708-173-3
... A 203 High-strength quenched and tempered steels, such as HY-80 and ASTM A 514 and A 517 Medium-carbon, heat-treatable, low-alloy steels, such as AISI 4130 Several grades of stainless steel are welded with both gas-shielded and self-shielded flux-cored electrodes. Electrodes designed...
Abstract
In the flux-cored arc welding (FCAW) process, the heat for welding is produced by an electric arc between a continuous filler metal electrode and a workpiece. This article discusses the advantages and disadvantages and applications of the FCAW process. It schematically illustrates the semiautomatic FCAW equipment used in the gas-shielded FCAW process. The article discusses the manufacture of flux-cored electrodes and the classification of electrodes, such as carbon and low-alloy steel electrodes, stainless steel electrodes, and nickel-base electrodes. The functions of common core ingredients in FCAW electrodes are listed in a table.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005601
EISBN: 978-1-62708-174-0
... formulations using gas blends of 85 to 90% Ar/balance CO 2 were designed and used in common applications. Process Features Flux cored welding electrodes are supplied in two distinct product types: Gas-shielded flux cored arc welding (FCAW-G) process Self-shielded flux cored arc welding (FCAW-S...
Abstract
This article describes the process features, advantages, limitations, and applications of the flux cored arc welding (FCAW) as well as the equipment used in the process. Base metals, namely, carbon and low-alloy steels, stainless steels, and nickel-base alloys, welded by the FCAW process are reviewed. The article illustrates the manufacturing process for the electrodes used in FCAW and outlines the classification of carbon and low-alloy steel, stainless steel, and nickel-base electrodes.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003176
EISBN: 978-1-62708-199-3
... Abstract This article provides general guidelines for casting design to provide progressive solidification, minimize heat concentration, eliminate cores, and prevent distortion. Casting design also affects tolerances. Casting tolerances depend on the alloy being poured, the size of the casting...
Abstract
This article provides general guidelines for casting design to provide progressive solidification, minimize heat concentration, eliminate cores, and prevent distortion. Casting design also affects tolerances. Casting tolerances depend on the alloy being poured, the size of the casting, and the molding method used. Designers can predict the effect of the design on the structure of the final part using solidification simulation models, namely finite element and finite difference models, and rapid prototyping. The article concludes with a short note on how the quality is assured in the foundry.
Book Chapter
Honeycomb
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 November 1995
DOI: 10.31399/asm.hb.emde.a0003037
EISBN: 978-1-62708-200-6
... the shape of core to fit customer's specific needs. The article provides information on the basic concept of creating sandwich structures and its corresponding aspects like material selection, design guidelines, and structural efficiency. core characteristics design guidelines honeycomb material...
Abstract
Honeycomb is a product consisting of very thin sheets attached to form connecting cells. This article briefly explains the construction, core characteristics, properties, and testing methods of the honeycomb structures. It discusses the special processes carried out in customizing the shape of core to fit customer's specific needs. The article provides information on the basic concept of creating sandwich structures and its corresponding aspects like material selection, design guidelines, and structural efficiency.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005308
EISBN: 978-1-62708-187-0
... processes such as die casting and permanent mold casting. The article reviews the pattern features and mold production considerations used in the pattern design, namely, parting line considerations, addition of gates and risers, core prints, and locating points. It examines the pattern allowances...
Abstract
This article discusses the types of patterns used for a specific application such as loose patterns, match plate patterns, cope and drag patterns, and special patterns. It describes the principles of the patternmaking techniques used to make expendable molds and for metal casting processes such as die casting and permanent mold casting. The article reviews the pattern features and mold production considerations used in the pattern design, namely, parting line considerations, addition of gates and risers, core prints, and locating points. It examines the pattern allowances for ensuring a dimensionally correct final pattern. A variety of materials and advanced composite materials used in the manufacture of patterns are discussed. The article evaluates the factors influencing the selection of type of patterns for specific castings.
1