1-20 of 563 Search Results for

copper-phosphorus alloys

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001389
EISBN: 978-1-62708-173-3
... that contribute to high quality in an RB joint. The article discusses the classification of RB such as manual RB or automatic RB. It describes the selection of metal electrodes and filler metals for RB. The filler metals include silver alloys, aluminum-silicon alloys, and copper-phosphorus alloys. aluminum...
Image
Published: 01 December 2004
Fig. 13 Alloy C12200 (deoxidized high-phosphorus copper), continuously cast in a 102 mm (4 in.) diameter ingot. Top, transverse section showing radial grain growth. Bottom, longitudinal section. Dark center is columnar grains oriented along the axis of the ingot. Waterbury reagent was used More
Image
Published: 01 December 2004
Fig. 14 The same C12200 (deoxidized high-phosphorus copper) continuously cast alloy in a 102 mm (4 in.) diameter ingot as in Figure 13 Section taken near the ingot surface normal to the radial grain growth. The structure is coarse, unbranched dendrites. Waterbury reagent was used, which has More
Image
Published: 01 December 2004
Fig. 15 The same C12200 (deoxidized high-phosphorus copper) continuously cast alloy in a 102 mm (4 in.) diameter ingot as in Fig. 14 Section taken near the ingot core normal to the radial grain growth. The dendrite structure is much finer than in Fig. 14 . Waterbury reagent was used, which More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005247
EISBN: 978-1-62708-187-0
... fell out of favor because the fumes associated with breakdown of salts or vaporizing of PCl 5 were unpleasant if not unhealthy. Another additive researched and reported in the 1960s ( Ref 2 ) and continuing in use even today (2008) is the alloy of phosphorus and copper. Commonly called phos-copper...
Series: ASM Handbook
Volume: 3
Publisher: ASM International
Published: 27 April 2016
DOI: 10.31399/asm.hb.v03.a0006191
EISBN: 978-1-62708-163-4
....” “Cu-P (Copper - Phosphorus)” in the article “Cu (Copper) Binary Alloy Phase Diagrams.” “Fe-P (Iron - Phosphorus)” in the article “Fe (Iron) Binary Alloy Phase Diagrams.” “Ge-P (Germanium - Phosphorus)” in the article “Ge (Germanium) Binary Alloy Phase Diagrams.” “In-P (Indium...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006278
EISBN: 978-1-62708-169-6
... among the cast copper alloys, but it is essentially identical to phosphorus-deoxidized copper (C81200) in other respects. Both oxygen-free and deoxidized coppers are readily weldable. Typical mechanical properties are similar for the different grades: UNS designation As-cast mechanical properties...
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003772
EISBN: 978-1-62708-177-1
... BCuP-5 brazing alloy 80 Cu, 15 Ag, 5 P Coppers The alloys designated as coppers contain 99.3% or more copper. These have the highest electrical and thermal conductivity. Impurities such as phosphorus, tin, selenium, tellurium, and arsenic are detrimental to properties such as electrical...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001454
EISBN: 978-1-62708-173-3
... filler metal can be used without flux, although flux is sometimes recommended. The brazing characteristics of most copper filler metals and alloys are improved when a flux is used. In this case, phosphorus-deoxidized and oxygen-free coppers can be joined with a brazing filler metal from the silver...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005332
EISBN: 978-1-62708-187-0
..., nickel, beryllium, chromium, and iron. The article discusses minor alloying additions, including antimony, bismuth, selenium, manganese, and phosphorus. Copper alloys can be cast by many processes, including sand casting, permanent mold casting, precision casting, high-pressure die casting, and low...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001267
EISBN: 978-1-62708-170-2
... of the reducing agent. Examples of this type of ternary system are alloys of nickel-copper-phosphorus or nickel-thallium-boron. Nonelectrolytic processes generally operate at slightly elevated temperatures up to the temperature of boiling. These processing solutions contain the primary element and may contain...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001450
EISBN: 978-1-62708-173-3
...- and nickel-base alloys) and phosphorus (in the case of copper- and nickel-base alloys) are added. The presence of one or more of these elements in the alloys tends to impart lower melting temperatures and surface tensions to the filler metal, as well as compatibility with the base material in terms...
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003831
EISBN: 978-1-62708-183-2
... alloys have been made on joints involving stainless steel. Copper filler alloys containing significant amounts of zinc (such as naval brass welding and brazing rod, RBCuZn, similar to UNS C4700) or phosphorus (such as copper-phosphorus brazing filler metal, BCuP, similar to UNS C55180...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006281
EISBN: 978-1-62708-169-6
... Abstract Bronzes generally are used to describe many different copper-base alloys in which the major alloying addition is neither zinc nor nickel. They are generally classified by their major alloying elements, for example, tin bronzes with phosphorus used as a deoxidizer, aluminum bronzes...
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005303
EISBN: 978-1-62708-187-0
... Fire refining (oxidation) can be used to remove impurities from copper-base melts in approximately the following order: aluminum, manganese, silicon, phosphorus, iron, zinc, tin, and lead. Nickel, a deliberate alloying element in certain alloys but an impurity in others, is not readily removed by fire...
Series: ASM Handbook
Volume: 12
Publisher: ASM International
Published: 01 June 2024
DOI: 10.31399/asm.hb.v12.a0007030
EISBN: 978-1-62708-387-4
... joint formation. In the soldering process, the metal on the soldering pad surface (i.e., copper, nickel, or silver) will react with the solder alloy and generate the IMC layer in the interface between the soldering pad and bulk solder. That said, the IMC layer is the intermedia to bond the solder alloy...
Image
Published: 09 June 2014
Fig. 15 Effect of the presence of low concentrations of alloying elements on time-to-fracture of copper by stress-corrosion cracking under an applied tensile stress of 70 MPa (10 ksi) in a moist atmosphere. UNS C12200 is a wrought phosphorus deoxidized copper. Source: Ref 14 More
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003136
EISBN: 978-1-62708-199-3
...-phosphorus), alloy C19400 (copper-iron-phosphorus-zinc), and alloy C19500 (copper-iron-cobalt-tin-phosphorus) are popular for these applications because they have good conductivity, good strength, and good softening resistance. Figures 2 and 3 compare the softening resistance of these alloys...
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006388
EISBN: 978-1-62708-192-4
... Abstract This article begins by describing the designations of cast and wrought aluminum alloys. It explains the effects of main alloying elements in aluminum alloys: boron, chromium, copper, iron, lithium, magnesium, manganese, nickel, phosphorus, silicon, sodium, strontium, titanium, and zinc...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001385
EISBN: 978-1-62708-173-3
..., and various heat-resistant materials. Most combinations of these materials can also be torch brazed. It is necessary to use flux with these materials, except when a phosphorus brazing alloy is used to braze pure copper parts. In this case, the phosphorus acts as the flux. The low-temperature silver-base...