Skip Nav Destination
Close Modal
Search Results for
copper-infiltrated steels
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 170
Search Results for copper-infiltrated steels
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006076
EISBN: 978-1-62708-175-7
... Abstract The two most important classes of materials that are manufactured via infiltration methods are copper- and silver-infiltrated refractory metals and refractory carbides, and copper-infiltrated steels. This article focuses on copper-infiltrated steels and discusses the basic requirements...
Abstract
The two most important classes of materials that are manufactured via infiltration methods are copper- and silver-infiltrated refractory metals and refractory carbides, and copper-infiltrated steels. This article focuses on copper-infiltrated steels and discusses the basic requirements for infiltration, which is a technique that is only applicable to material systems that meet certain requirements. It addresses these requirements and describes the conventional (partial) infiltration process of powder metallurgy (PM) steel. The materials used in the process, such as matrix and infiltrant, are discussed. The article also details several criteria used to evaluate the performance of an infiltration process. It concludes with information on alloy steels and fully infiltrated steels.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006101
EISBN: 978-1-62708-175-7
...-infiltrated iron copper-infiltrated steel diffusion alloys ferrous powder metallurgy materials ferrous powders hybrid alloys iron-copper alloys mechanical properties microstructure prealloys FERROUS POWDER METALLURGY (PM) processing is a net or near-net-shape production technology, which...
Abstract
This article summarizes the general classification, mechanical properties, and applications of ferrous powder metallurgy (PM) materials for parts production. It discusses four principal ferrous PM alloy types: admixed elemental alloys, diffusion alloys, prealloys, and hybrid alloys. The article reviews the benefits and disadvantages as well as the effect of processing on the properties and material microstructure of these alloys. It contains tables that list the mechanical properties of various iron-copper and copper steels.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006099
EISBN: 978-1-62708-175-7
... properties, while minimizing the effect on infiltrant copper-phase melting point. Binary systems for typical infiltration processes Table 1 Binary systems for typical infiltration processes Skeleton Infiltrants Aluminum Antimony Bismuth Cobalt Copper Iron Magnesium Mangenese Nickel...
Abstract
This article provides information on the infiltration mechanism of carbide structures. It reviews the basic techniques used for metal infiltration, including dip infiltration, contact filtration, gravity feed infiltration, and external-pressure infiltration. The article highlights various applications of contact infiltration in oil, gas, and blast-hole drilling such as fixed-cutter drill bits and diamond-impregnated coring bits. It also discusses the applications of infiltrated carbide material in erosion-resistant cladding.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003789
EISBN: 978-1-62708-177-1
... atmosphere, such as decarburization in a steel, (2) being sealed over with pure copper during infiltration, or sealed over by tumbling, or (3) shallow hardenability in elemental mixes of steels. Density can vary from point to point. During sintering, the protected bottom of the part “sees” a different...
Abstract
This article provides information on the microstructure of powder metal alloys and the special handling requirements of porous materials. It covers selection, sectioning, mounting, grinding, and polishing, and describes procedures, such as washing, liquid removal, and impregnation, meant to preserve pore structures and keep them open for analysis. The article compares and contrasts the microstructures of nearly 50 powder metal alloys, using them to illustrate the effect of consolidation and compaction methods as well as particle size, composition, and shape. It discusses imaging equipment and techniques and provides data on etchants and etching procedures.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003112
EISBN: 978-1-62708-199-3
...–1.7 3.60–4.40 0.4–0.6 P/M copper-infiltrated iron and steel FX-1000 82.8–92.0 0.0–0.3 8.0–14.9 … … FX-1005 82.5–91.7 0.3–0.6 8.0–14.9 … … FX-1008 82.2–91.4 0.6–0.9 8.0–14.9 … … FX-2000 72.7–85.0 0.0–0.3 15.0–25.0 … … FX-2005 72.4–84.7 0.3–0.6 15.0–25.0...
Abstract
Iron powders are the most widely used powder metallurgy (P/M) material for structural parts. This article reviews low to medium density iron and low-alloy steel parts produced by the pressing and sintering technology. It explains different powder production methods, including Hoeganaes process, Pyron process, atomization of liquid metal, thermal decomposition and the electrodeposition process for carbonyl and electrolytic iron powders. It describes the types of compaction and sintering, explaining their effects of processing with designations. Further, the article deals with the mechanical and physical properties of ferrous P/M materials, which may depend on certain factors, namely microstructure, porosity, density, infiltration, re-pressing, chemical composition, and heat treatment.
Image
Published: 01 December 2004
Fig. 1 Microstructure of a porous high-carbon steel powder metallurgy specimen infiltrated with copper showing the natural color of the copper, which is easier to see when the steel has been tint etched (revealing coarse plate martensite and retained austenite)
More
Image
Published: 01 January 1990
Fig. 1 Powder metallurgy production methods for cermet and cemented-carbide products Production method Products 1. Presintering Cemented-carbide parts and cermets 2. Vacuum sintering Steel-bonded carbides (standard pieces) and cermets 3. Canning Steel-bonded carbides
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005339
EISBN: 978-1-62708-187-0
... vol% ZrO 2 5–80 4 TiO 2 5–80 4 Lead … 10 Copper base Graphite … … Al 2 O 3 11 74 vol% ZrO 2 5 2.12 vol% Steel TiO 2 8 … CeO 2 10 … Illite clay 753 3 Graphite microballoons … … Tin-base Babbit metal Graphite particle … … Al 2 O...
Abstract
Metal matrix composites (MMCs) can be synthesized by vapor phase, liquid phase, or solid phase processes. This article emphasizes the liquid phase processing where solid reinforcements are incorporated in the molten metal or alloy melt that is allowed to solidify to form a composite. It illustrates the three broad categories of MMCs depending on the aspect ratio of the reinforcing phase. The categories include continuous fiber-reinforced composites, discontinuous or short fiber-reinforced composites, and particle-reinforced composites. The article discusses the two main classes of solidification processing of composites, namely, stir casting and melt infiltration. It describes the effects of reinforcement present in the liquid alloy on solidification. The article examines the automotive, space, and electronic packaging applications of MMCs. It concludes with information on the development of select cast MMCs.
Image
Published: 01 December 2004
Fig. 37 Liner that was made by infiltrating an open grid of tin bronze (98Cu-2Sn) with molten lead-base babbitt (SAE 16). The grid was made by sintering a mixture of copper and copper-tin alloy powders on a steel backing strip. The excess babbitt formed an overlay. NH 4 OH + H 2 O 2 . Original
More
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002374
EISBN: 978-1-62708-193-1
... 1–3% Ni, max 2.5% Cu, max 0.3% C Nickel steel 1–8% Ni, max 2.5% Cu, max 1% C Low-alloy steel 0.3–2% Ni, 0.5–1% Mo, 0.4–0.8% C Infiltrated steel 8–25% Cu, max 1% C Phosphorus steel 0.4–0.8% P, low C Sinter-hardened steel 1–3% Cr, 1–2% Mn, 2% Ni, 0.4–0.8% C Iron-copper...
Abstract
This article discusses the fracture and fatigue properties of powder metallurgy (P/M) materials depending on the microstructure. It describes the effects of porosity on the P/M processes relevant to fatigue and fracture resistance. The article details the factors determining fatigue and fracture resistance of P/M materials. It reviews the methods employed to improve fatigue and fracture resistance, including carbonitriding, surface strengthening and sealing treatments, shot-peening, case hardening, repressing and resintering, coining, sizing, and postsintering heat treatments. Safety factors for P/M materials are also detailed.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002486
EISBN: 978-1-62708-194-8
... steel or copper-infiltrated tungsten) is also used to seal porosity, but most often to increase mechanical properties or create unique composite structures. Steam Treating Steam treating, also known as steam oxidizing, is a low-temperature (540 °C, or 1000 °F, 1 to 2 h) heat treatment process...
Abstract
This article begins with a discussion on general powder metallurgy design considerations that assist in the selection of the appropriate processing method. It reviews powder processing techniques, conventional press-and-sinter methods, and full-density processes to understand the design restrictions of each powder processing method. The article provides comparison of powder processing methods based on their similarities, differences, advantages, and disadvantages. It concludes with a discussion on design issues for the components of powder processing technologies.
Image
Published: 30 September 2015
Fig. 2 Effect of amount of graphite added on the dimensional change of copper infiltrated and uninfiltrated sintered steel
More
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003135
EISBN: 978-1-62708-199-3
... and nickel silver P/M parts, copper-nickel P/M parts, copper-lead P/M parts, copper-base P/M friction materials, copper-base P/M electrical contact materials, copper-base P/M brush materials, infiltrated parts, and oxide-dispersion-strengthened copper P/M materials. copper alloy powders copper powders...
Abstract
This article discusses the characteristics, properties, and production methods of copper powders and copper alloy powders. Bulk of the discussion is devoted to production and applications of powder metallurgy (P/M) parts, including pure copper P/M parts, bronze P/M parts, brass and nickel silver P/M parts, copper-nickel P/M parts, copper-lead P/M parts, copper-base P/M friction materials, copper-base P/M electrical contact materials, copper-base P/M brush materials, infiltrated parts, and oxide-dispersion-strengthened copper P/M materials.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001044
EISBN: 978-1-62708-161-0
... 49 FL-4605-140HT (f) 1070 155 (g) (g) <0.5 148 21.5 1585 230 9.5 7.0 39 HRC (i) 405 59 Copper-infiltrated iron and steel (l) FX-1000-25 (e) 350 51 220 32 7.0 110 16.0 910 132 34 25 65 HRB 130 19 FX-1005-40 (e) 530 77 345 50 4.0 110 16.0...
Abstract
Certain metal products can be produced only by powder metallurgy; among these products are materials whose porosity is controlled. Successful production by powder metallurgy depends on the proper selection and control of process variables: powder characteristics; powder preparation; type of compacting press; design of compacting tools and dies; type of sintering furnace; composition of the sintering atmosphere; choice of production cycle, including sintering time and temperature; and secondary operations and heat treatment. When the application of a powder metallurgy part requires high levels of strength, toughness, or hardness, the mechanical properties can be improved or modified by infiltration, heat treatment, or a secondary mechanical forming operation such as cold re-pressing or powder forging. The article also discusses the effect of the secondary processes on P/M mechanical properties.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003773
EISBN: 978-1-62708-177-1
... on steel Silver-lead alloy electroplate on steel Tin-base babbitt overlay on copper-lead-tin alloy liner Tin bronze infiltrated with lead-base babbitt Tin bronze infiltrated with synthetic fluorine-containing resin Trimetal bearing: lead-tin-copper electroplated overlay, brass electroplated barrier, copper...
Abstract
This article describes the various specimen preparation procedures for lead, lead alloys, and sleeve bearings, including sectioning, mounting, grinding, polishing, and etching. The microscopic examination and microstructures of lead and lead alloys are discussed. The article also provides information on the microstructures of sleeve bearing materials.
Image
Published: 01 January 2003
) and scriptlike Mg 2 Si (black) also are present. 0.5% HF. 250× (d) Graphite-silver copper composite (Thornel 300 fiber in 70Ag-30Cu eutectic matrix), unidirectional. Liquid-metal infiltration of fiber bundles followed by diffusion bonding. SEM of a failed tensile surface. The matrix shows good ductility
More
Book Chapter
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003420
EISBN: 978-1-62708-195-5
... magnesium, copper, and superalloy MMCs. metal-matrix composites high-pressure die casting pressure infiltration casting liquid metal infiltration spray deposition powder metallurgy continuous fiber-reinforced aluminum composite discontinuously reinforced titanium composites continuous fiber...
Abstract
Metal-matrix composites (MMCs) are a class of materials with a wide variety of structural, wear, and thermal management applications. This article discusses the primary processing methods used to manufacture discontinuous aluminum MMCs, namely, high-pressure die casting, pressure infiltration casting, liquid metal infiltration, spray deposition, and powder metallurgy methods. It describes the processing of continuous fiber-reinforced aluminum, discontinuously, reinforced titanium, and continuous fiber-reinforced titanium. The article concludes with information on work done to develop magnesium, copper, and superalloy MMCs.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003163
EISBN: 978-1-62708-199-3
... Abstract Metal-matrix composites (MMCs) are a class of materials with potential for a wide variety of structural and thermal applications. This article discusses the mechanical properties of MMCs, namely aluminum-matrix composites, titanium-matrix composites, magnesium-matrix composites, copper...
Abstract
Metal-matrix composites (MMCs) are a class of materials with potential for a wide variety of structural and thermal applications. This article discusses the mechanical properties of MMCs, namely aluminum-matrix composites, titanium-matrix composites, magnesium-matrix composites, copper-matrix composites, superalloy-matrix composites, and intermetallic-matrix composites. It describes the processing methods of discontinuous aluminum MMCs which include casting processes, liquid-metal infiltration, spray deposition and powder metallurgy. The article provides useful information on aluminum MMC designation system and also describes the types of continuous fiber aluminum MMCs, including aluminum/boron MMC, aluminum/silicon carbide MMC, aluminum/graphite MMC, and aluminum/alumina MMC.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006091
EISBN: 978-1-62708-175-7
... silver and copper do not alloy with tungsten, molybdenum, or their carbides, PM processes are required in fabrication. Depending on the composition, refractory metals containing silver or copper contact materials are made either by pressing and sintering or by the press-sinter-infiltrate method. When...
Abstract
Electrical contacts are made of elemental metals, composites, or alloys that are made by the melt-cast method or manufactured by powder metallurgy (PM) processes. PM facilitates combinations of metals that ordinarily cannot be achieved by alloying. This article describes the processing, properties, and performance of electrical contacts based on PM or hybrid composite technologies with refractory metals and compounds. These metals and compounds include tungsten, molybdenum, carbide-based composites, and silver-base composites. The article explains composite manufacturing methods, namely, PM methods, internal oxidation, and hybrid consolidation. The availability of the refractory metals and compounds in various product forms are also reviewed.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004024
EISBN: 978-1-62708-185-6
..., which is then loaded into a hydrogen-reduction furnace. During sintering the binder material is burned off resulting in a “brown part” that is 70% A6 steel and tungsten carbide, and 30% void (air). The final step is to infiltrate the open spaces in the brown (sintered) part with copper...
Abstract
This article describes two rapid tooling technologies, namely, direct rapid tooling and indirect rapid tooling, for forging-die applications. Commonly used direct rapid tooling technologies include selective laser sintering, three-dimensional printing, and laser-engineered net shape process. The indirect rapid tooling technologies include 3D Keltool process, hot isostatic pressing, rapid solidification process tooling, precision spray forming, and radially constricted consolidation process.
1