Skip Nav Destination
Close Modal
Search Results for
copper-base shape memory alloys
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 206 Search Results for
copper-base shape memory alloys
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Handbook
Volume: 24
Publisher: ASM International
Published: 15 June 2020
DOI: 10.31399/asm.hb.v24.a0006579
EISBN: 978-1-62708-290-7
... Abstract This article is a detailed account of additive manufacturing (AM) processes for copper and copper alloys such as copper-chromium alloys, GRCop, oxide-dispersion-strengthened copper, copper-nickel alloys, copper-tin alloys, copper-zinc alloys, and copper-base shape memory alloys. The AM...
Abstract
This article is a detailed account of additive manufacturing (AM) processes for copper and copper alloys such as copper-chromium alloys, GRCop, oxide-dispersion-strengthened copper, copper-nickel alloys, copper-tin alloys, copper-zinc alloys, and copper-base shape memory alloys. The AM processes include binder jetting, ultrasonic additive manufacturing, directed-energy deposition, laser powder-bed fusion, and electron beam powder-bed fusion. The article presents a review of the literature and state of the art for copper alloy AM and features data on AM processes and industrial practices, copper alloys used, selected applications, material properties, and where applicable, compares these data and properties to traditionally processed materials. The data presented and the surrounding discussion focus on bulk metallurgical processing of copper components. The discussion covers the composition and performance criteria for copper alloys that have been reported for AM and discusses key differences in process-structure-property relationships compared to conventionally processed material. The article also provides information on feedstock considerations for copper powder handling.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003160
EISBN: 978-1-62708-199-3
... and properties (mechanical and physical) of commercial SMA alloys, namely nickel-titanium alloys and copper-base alloys. applications of shape memory alloys copper base alloys general characteristics mechanical properties nickel-titanium alloys physical properties processing of shape memory alloys...
Abstract
The term shape memory alloys (SMAs) refers to the group of metallic materials that demonstrate the ability to return to some previously defined shape or size when subjected to the appropriate thermal procedure. Materials that exhibit shape memory only upon heating are referred to as having a one-way shape memory. Some materials also undergo a change in shape upon recooling. These materials have a two-way shape memory. This article discusses the general characteristics of SMAs by using typical transformation versus temperature curve. It describes the processing, applications and properties (mechanical and physical) of commercial SMA alloys, namely nickel-titanium alloys and copper-base alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001100
EISBN: 978-1-62708-162-7
... them using differential scanning calorimeter (DSC) techniques as well as other methods. The article examines the most common shape memory alloys, namely, nickel-titanium and copper-base SMAs, and provides information on their respective properties. biomedical applications copper-base shape...
Abstract
This article discusses the history of shape memory alloys (SMAs) along with their properties, capabilities, and crystallography, including phase transformations that occur during thermal treatment. It describes the thermomechanical behaviors of SMAs and explains how to characterize them using differential scanning calorimeter (DSC) techniques as well as other methods. The article examines the most common shape memory alloys, namely, nickel-titanium and copper-base SMAs, and provides information on their respective properties.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003776
EISBN: 978-1-62708-177-1
..., and copper. gold jewelry alloys intermetallic gold compounds iridium alloys metallographic preparation metallographic samples metallography microstructure platinum jewelry alloys platinum-aluminum-copper alloys platinum-base alloys precious metals ruthenium alloys shape memory alloys...
Abstract
This article explains how to prepare precious metal test samples for metallographic examination. It discusses cutting, mounting, grinding, polishing, and etching and addresses some of the challenges of working with small, relatively soft specimens. It includes dozens of example micrographs, comparing and contrasting the microstructural features of gold, platinum, iridium, palladium, and ruthenium-base alloys. It examines pure gold, intermetallic gold compounds, gold and platinum jewelry alloys, platinum-containing shape memory alloys, and alloys consisting of platinum, aluminum, and copper.
Book Chapter
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003736
EISBN: 978-1-62708-177-1
... ( Ref 37 ). Fig. 33 Surface relief due to thermoelastic martensite transformation in a copper-zinc shape memory alloy. Source: Ref 37 . Reprinted with permission There are several characteristics of shape memory alloys (SMA) that make them unique from other alloys exhibiting martensitic...
Abstract
Martensite is a metastable structure that forms during athermal (nonisothermal) conditions. This article reviews the crystallographic theory, morphologies, orientation relationships, habit plane, and transformation temperature of ferrous martensite microstructures. It examines the stages of the tempering process involved in ferrous martensite. The article also describes the formation of the martensite structure in nonferrous systems. It concludes with a discussion on shape memory alloys.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001072
EISBN: 978-1-62708-162-7
... ) A number of other applications for nickel alloys involve the unique physical properties of special-purpose nickel-base or high-nickel alloys. These include: Low-expansion alloys Electrical resistance alloys Soft magnetic alloys Shape memory alloys Each of these special-purpose alloys...
Abstract
Nickel in elemental form or alloyed with other metals and materials has made significant contributions to our present-day society and promises to continue to supply materials for a demanding future. This article provides a historical overview and physical metallurgy of nickel and nickel alloys. It lists and describes the compositions, mechanical and physical properties, and applications of commercial nickel and its alloys. The article briefly explains the forms of corrosion resulting from the exposure of nickel alloys to aqueous environments. It provides valuable information on the commercial forms of nickel alloys, namely, nickel-copper alloys, nickel-chromium and nickel-chromium-iron series, iron-nickel-chromium alloys, controlled-expansion alloys, nickel-iron low-expansion alloys, soft magnetic alloys, and welding alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006274
EISBN: 978-1-62708-169-6
... Abstract This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium alloys...
Abstract
This article describes the different types of precipitation and transformation processes and their effects that can occur during heat treatment of various nonferrous alloys. The nonferrous alloys are aluminum alloys, copper alloys, magnesium alloys, nickel alloys, titanium alloys, cobalt alloys, zinc alloys, and heat treatable silver alloys, gold alloys, lead alloys, and tin alloys. It also provides a detailed discussion on the effects due to precipitation and transformation processes in these non-ferrous alloys.
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006261
EISBN: 978-1-62708-169-6
..., special-purpose alloys such as nitinol shape memory alloys, low-expansion alloys, electrical-resistance alloys and soft magnetic alloys. Finally, the article focuses on heat treatment modeling for selecting the appropriate heat treatment process. aging annealing corrosion-resistant nickel alloys...
Abstract
This article provides information on nickel alloying elements, and the heat treatment processes of various nickel alloys for applications requiring corrosion resistance and/or high-temperature strength. These processes are homogenization, annealing, solution annealing, solution treating, stabilization treatment, age hardening, stress relieving, and stress equalizing. Discussion of furnaces, fixtures, and atmospheres is included. Nickel alloys used for the heat treatment processes include corrosion-resistant nickel alloys, heat-resistant nickel alloys, nickel-beryllium alloys, special-purpose alloys such as nitinol shape memory alloys, low-expansion alloys, electrical-resistance alloys and soft magnetic alloys. Finally, the article focuses on heat treatment modeling for selecting the appropriate heat treatment process.
Series: ASM Handbook
Volume: 23
Publisher: ASM International
Published: 01 June 2012
DOI: 10.31399/asm.hb.v23.a0005658
EISBN: 978-1-62708-198-6
... fatigue heat treatment medical device design nitinol physical metallurgy physical properties shape memory alloys superelasticity tensile properties THIS ARTICLE is not intended as a treatise of Nitinol or the shape memory effect but rather focuses on specific aspects of Nitinol...
Abstract
This article focuses on the specific aspects of nitinol that are of interest to medical device designers. It describes the physical metallurgy, physical properties, and tensile properties of the nitinol. The article discusses the factors influencing superelastic shape memory effects, fatigue, and corrosion in medical device design. It reviews the biocompatibility of nitinol based on corrosion behavior. The article explains the general principles, potential pitfalls, and key properties for manufacturing, heat treatment, and processing of nitinol.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005303
EISBN: 978-1-62708-187-0
... solubility induction furnaces fluxing metal refining grain refining filtration copper casting alloys open-flame furnaces ALL COPPER ALLOYS can be successfully cast in sand. Sand casting allows the greatest flexibility in casting size and shape and is the most economical casting method if only...
Abstract
This article describes the casting characteristics and practices of copper and copper alloys. It discusses the melting and melt control of copper alloys, including various melt treatments to improve melt quality. These treatments include fluxing and metal refining, degassing, deoxidation, grain refining, and filtration. The article provides a discussion on these melt treatments for group I to III alloys. It describes the three categories of furnaces for melting copper casting alloys: crucible furnaces, open-flame furnaces, and induction furnaces. The article explains the important factors that influence the selection of a casting method. It discusses the production of copper alloy castings. The article concludes with information on the gating and feeding systems used in production of copper alloy castings.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003971
EISBN: 978-1-62708-185-6
... metalworking equipment microforming nickel-base alloys ring-rolling machines rolling mills surface-rolling machines thermomechanical process thread-rolling machines titanium-base alloys METALWORKING consists of deformation processes in which a metal billet or blank is shaped by tools or dies...
Abstract
Metalworking is one of the three major technologies used to fabricate metal products. This article tabulates the classification of metal forming processes. It discusses different types of metalworking equipment, including rolling mills, ring-rolling machines, and thread-rolling and surface-rolling machines. The article outlines the significant characteristics of pressing-type machines: load and energy characteristics, time-related characteristics, and accuracy characteristics. It summarizes different specialized processes such as advanced roll-forming methods, equal-channel angular extrusion, incremental forging, and microforming. The article describes the thermomechanical processing of nickel- and titanium-base alloys and concludes with information on the advancements in process simulation.
Series: ASM Handbook
Volume: 10
Publisher: ASM International
Published: 15 December 2019
DOI: 10.31399/asm.hb.v10.a0006684
EISBN: 978-1-62708-213-6
... structure, although the intermetallic structures are hard to see. In Fig. 37 , martensite in a nitinol shape memory alloy (SMA) after etching using equal parts nitric acid, acetic acid, and hydrofluoric acid is revealed more clearly using DIC than bright field. Fig. 35 Example of comet tails after...
Abstract
The reflected light microscope is the most commonly used tool to study the microstructure of metals, composites, ceramics, minerals, and polymers. For the study of the microstructure of metals and alloys, light microscopy is employed in the reflected-light mode using either bright-field illumination, dark-field illumination, polarized light illumination, or differential interference contract, generally by the Nomarski technique. This article concentrates on how to reveal microstructure properly to enable the proper identification of the phases and constituents and, if needed, measuring the amount, size, and spacing of constituents, using the light optical microscope. The discussion covers the examination of microstructures using different illumination methods and includes a comparison between light optical images and scanning electron microscopy images of microstructure.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003134
EISBN: 978-1-62708-199-3
... to produce parts with shapes that cannot be easily obtained by fabrication methods such as forming or machining. Often, it is more economical to produce a part as a casting than to fabricate it by other means. Types of Copper Alloys Because pure copper is extremely difficult to cast and is prone...
Abstract
Copper alloy castings are used in applications that require superior corrosion resistance, high thermal or electrical conductivity, good bearing surface qualities, or other special properties. Discussing the types and compositions of copper alloy used for casting, this article describes the major factors considered in alloy selection for casting, including raw material cost, castability, machinability, and the bearing and wear properties. It also provides information on the cost of the final product.
Series: ASM Handbook
Volume: 18
Publisher: ASM International
Published: 31 December 2017
DOI: 10.31399/asm.hb.v18.a0006382
EISBN: 978-1-62708-192-4
... <xref rid="a0006382-ref16" ref-type="bibr">(Ref 16)</xref> Copper-Base Alloys Copper-base alloys have found many applications due to their modifiable mechanical properties and other attractive properties, for example, high intrinsic corrosion resistance and high electrical and thermal conductivities. The high electrical and thermal...
Abstract
Abrasive wear is a surface-damage process with material loss caused by hard asperities or abrasive particles occurring when two surfaces are sliding against each other. There are two types of abrasive wear: two-body abrasion and three-body abrasion. This article discusses the abrasive wear mechanism in ductile materials and commonly used testers for evaluating the resistance of materials to abrasive wear. The testers include pin-on-disk, block-on-ring, block-on-drum, and dry sand/rubber wheel abrasion tester. The article reviews the abrasion resistance of metallic materials, ceramic materials, and polymeric materials. It discusses factors that influence abrasive wear, including the environment, hardness, toughness, microstructure, and lubrication.
Book: Powder Metallurgy
Series: ASM Handbook
Volume: 7
Publisher: ASM International
Published: 30 September 2015
DOI: 10.31399/asm.hb.v07.a0006125
EISBN: 978-1-62708-175-7
... be achieved by liquid-phase sintering (LPS) for a particular class of tungsten-base alloys known as tungsten heavy alloys (WHAs). Porous molybdenum and tungsten parts can also be infiltrated with copper or silver to produce full-density composites. In special cases, refractory metals and alloys can be hot...
Abstract
The residual porosity in sintered refractory metal ingots is usually eliminated by different densification processes, such as thermomechanical processes. This article focuses on thermomechanical processing of tungsten, molybdenum, and tantalum. It provides an overview of liquid-phase sintering of tungsten heavy alloys and describes the infiltration of tungsten and molybdenum for attaining full density. The article concludes by providing information on hot isostatic pressing of refractory metal alloys to full density.
Book: Fatigue and Fracture
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002354
EISBN: 978-1-62708-193-1
... Experimentally determined stress-strain path measured on polycrystalline copper Memory Effect and the 1:2 Rule The term cyclic neutralization denotes an experimental technique whereby the stress-strain origin in a cyclic deformation test can be found. For this purpose, starting from a (stabilized...
Abstract
This article discusses the microstructural processes that take place during plastic deformation and presents a plain phenomenological and general description of the cyclic stress-strain (CSS) response. It emphasizes the microstructural aspects of cyclic loading on single-phase materials tested in initially soft, dislocation-poor conditions resulting from a prior heat treatment. The article discusses deformation-induced phase transformations in austenitic stainless steels and commercial age-hardened aluminum alloys. It describes the interaction of dislocations and the strengthening of second-phase particles. The article also provides a description of the framework used to model the CSS response on a physical basis.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001417
EISBN: 978-1-62708-173-3
.... This includes sheet, plate, rod, bar, extruded shapes, forgings, and castings. The 2 xxx series alloys, having copper as the primary alloying addition, possess high strength but somewhat lower corrosion resistance than most other aluminum alloys. Many of these alloys also possess relatively good elevated...
Abstract
Aluminum alloys, particularly the heat-treatable alloys, are sensitive to weld cracking. Anticipation of these characteristics and general knowledge of these materials assist in selection of suitable method for welding heat-treatable aluminum alloys. This article provides a general description of the metallurgy, characteristics, and applications of heat-treatable aluminum alloys and a detailed discussion on the characteristics of heat-treatable aluminum alloys, their resulting impact on the weld quality and property, along with the methods of avoiding or reducing the impacts. The impact created in the weld quality includes crack sensitivity, liquation cracking, porosity, and heat-affected zone degradation. The article provides an overview of filler alloy selection for reducing weld crack sensitivity and increasing weld strength, ductility, and corrosion resistance in the welds of heat-treatable aluminum alloys.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002462
EISBN: 978-1-62708-194-8
... with processing parameters to meet the requirements of new technology. This process is ongoing today with the base alloys available for centuries (iron, copper, tin) as well as with the newer base alloys currently recruited to meet modern needs with unique property requirements (titanium, tungsten, niobium). When...
Abstract
This article focuses on the monolithic form of nonferrous alloys, including aluminum, copper, nickel, cobalt, titanium, zinc, magnesium, and beryllium alloys. Each metal and alloy offers unique combinations of useful physical, chemical, and structural properties that are made available by its particular composition and the proper choice of processing method. The article describes the composition, designation system, properties, and processing method of these metals and alloys. It discusses the effect of alloying elements in these alloys. The article explains microstructure/property relationships that are used to make specific properties available to the designers of structural applications. It provides examples of phase diagrams that illustrate eutectic and peritectic reactions.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003147
EISBN: 978-1-62708-199-3
... Alloy steels 9.0 Foundry products 3.5 Copper-base alloys 1.4 Other 1.8 Source: Nickel Development Institute Stainless Steels Stainless steels, principally the austenitic 300 series, are by far the largest consumers of nickel. Nickel is added to stainless steels to improve...
Abstract
Nickel and nickel-base alloys are vitally important to modern industry because of their ability to withstand a wide variety of severe operating conditions involving corrosive environments, high temperatures, high stresses, and combinations of these factors. This article discusses the mining and extraction of nickel and describes the uses of nickel. It discusses the categories of nickel-base alloys, including wrought corrosion-resistant alloys, cast corrosion-resistant alloys, heat-resistant alloys (superalloys), and special-purpose alloys. The article covers the corrosion resistance of nickel with the inclusion of varying alloying elements. It provides useful information on the behavior of nickel and nickel alloys in specific environments describes its corrosion resistance in certain acids, alkalis, and salts.
Series: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003752
EISBN: 978-1-62708-177-1
... in revealing β 1 martensite in a Cu-26%Zn-5%Al shape memory alloy. A more complex example of a shape memory alloy is given in Fig. 13 . This shows the structure of Spangold, a jewelry alloy (Au-19%Cu-5%Al), where some martensite was formed during hot mounting (it could be seen in polarized light...
Abstract
This article is a compilation of color etchants that have been developed for a limited number of metals and alloys. It describes the optical methods for producing color, such as polarized light and differential interference contrast, with illustrations. The article discusses film formation and interference techniques such as anodizing, chemical etching, and tint etching. It provides a description of reagents that deposit sulfide films and molybdate films. The article concludes with a discussion on the thermal and vapor deposition methods to produce color.
1