Skip Nav Destination
Close Modal
By
Janet Devine
By
Sachin D. Kore, J. Imbert, Y. Zhou, M. Worswick
By
Sunil Jha, Michael Karavolis, Kevin Dunn, James Forster
By
Jack Snodgrass, Jim Moran
Search Results for
copper sheet
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1132
Search Results for copper sheet
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 1998
Image
Copper alloy 26000 (cartridge brass, 70%) sheet, hot rolled to a thickness ...
Available to PurchasePublished: 01 January 1986
Fig. 14 Copper alloy 26000 (cartridge brass, 70%) sheet, hot rolled to a thickness of 10 mm (0.4 in.), annealed, cold rolled to a thickness of 6 mm (0.239 in.), and annealed to a grain size of 0.120 mm (0.005 in.). At this reduction, grains are basically equiaxed. Compare with Fig. 15
More
Image
Springback behavior of copper alloys as a function of temper, sheet thickne...
Available to PurchasePublished: 01 January 2006
Fig. 21 Springback behavior of copper alloys as a function of temper, sheet thickness, and bend radius (90° bends). (a) Alloy C21000. (b) Alloy C26000. (c) Alloy 35300
More
Image
Copper alloy 26000 (cartridge brass, 70%) sheet, hot rolled to a thickness ...
Available to PurchasePublished: 01 December 2004
Fig. 22 Copper alloy 26000 (cartridge brass, 70%) sheet, hot rolled to a thickness of 10 mm (0.4 in.), annealed, cold rolled to a thickness of 6 mm (0.230 in.), and annealed to a grain size of 0.120 mm (0.005 in.). At this reduction, grains are basically equiaxed. Compare with Fig. 23
More
Image
Tensile properties of high-purity, wrought aluminum-copper alloys. Sheet sp...
Available to PurchasePublished: 01 June 2016
Fig. 2 Tensile properties of high-purity, wrought aluminum-copper alloys. Sheet specimen was 13 mm (0.5 in.) wide and 1.59 mm (0.06 in.) thick. O, annealed; W, tested immediately after water quenching from solution heat treating temperature; T4, as in W but aged at room temperature; T6
More
Image
Tensile properties of high-purity, wrought aluminum-copper alloys. Sheet sp...
Available to Purchase
in Aluminum Mill and Engineered Wrought Products
> Properties and Selection: Nonferrous Alloys and Special-Purpose Materials
Published: 01 January 1990
Fig. 20 Tensile properties of high-purity, wrought aluminum-copper alloys. Sheet specimen was 13 mm (0.5 in.) wide and 1.59 mm (0.0625 in.) thick. O, annealed; W, tested immediately after water quenching from a solution heat treatment; T4, as in W, but aged at room temperature; T6, as in T4
More
Image
Influence of silver on raising the recrystallization of worked copper. (a) ...
Available to PurchasePublished: 01 June 2016
Fig. 9 Influence of silver on raising the recrystallization of worked copper. (a) Softening temperature of copper sheet rolled 2, 4, and 6 Brown & Sharpe numbers hard. Numbers on curves refer to reduction in gage. Source: Ref 10 . (b) Softening characteristics of oxygen-free copper
More
Image
Dependency of mechanical properties on the direction of testing of copper s...
Available to PurchasePublished: 01 June 2016
Fig. 18 Dependency of mechanical properties on the direction of testing of copper sheet with a strong cube texture. Source: Ref 17
More
Image
(a) Lap-joined aluminum outlets for a condensator. (b) Lap-joined copper sh...
Available to PurchasePublished: 31 October 2011
Fig. 17 (a) Lap-joined aluminum outlets for a condensator. (b) Lap-joined copper sheet with a thickness of 0.14 mm (0.006 in.)
More
Series: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003599
EISBN: 978-1-62708-182-5
... to the cell bus bars. The starting cathodes can be pure copper sheets made by electrodeposition on smooth starting blanks of stainless steel or titanium. Many copper refineries have now adopted stainless steel sheets or blanks in place of the copper sheets. When using stainless steel sheets, the final...
Abstract
Electrochemical refining is the purification process for producing commercially pure metals from crude metals. This article describes the principles of electrochemical reactions. It discusses the physical properties of the basic components of electrochemical refining cell. The article also explains the engineering considerations required in the refining process. Theoretical and technological principles of electrochemical refining are illustrated, with examples.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001066
EISBN: 978-1-62708-162-7
... to produce wrought copper and copper alloys in the form of sheet and strip products, tubular products, and wire and cable. Common processes include melting, casting, hot and cold rolling, milling or scalping, annealing, cleaning, slitting, cutting, and leveling. In addition, the article discusses stress...
Abstract
Wrought copper and copper alloys are produced in various mill-product forms for a variety of applications due to their high electrical conductivity, corrosion resistance, ease of fabrication, and good heat-transfer properties. This article describes the manufacturing processes used to produce wrought copper and copper alloys in the form of sheet and strip products, tubular products, and wire and cable. Common processes include melting, casting, hot and cold rolling, milling or scalping, annealing, cleaning, slitting, cutting, and leveling. In addition, the article discusses stress-relaxation characteristics of copper alloys.
Book Chapter
Procedure Development and Practice Considerations for Ultrasonic Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001448
EISBN: 978-1-62708-173-3
... is in the joining of copper and brass materials. Copper alloys can be joined together or to other materials, such as aluminum, with great success. Various tip geometries and surface finishes can be used. Welds in copper sheet that is up to 2 mm (0.08 in.) thick provide excellent joint strength. Stranded wires...
Abstract
Ultrasonic welding (USW) is effectively used to join both similar and dissimilar metals with lap-joint welds. This article describes procedure considerations for the ultrasonic welding of specific material types. It reviews difficult-to-weld alloys, such as carbon and low-alloy steels, high-strength steels, and stainless steel, and provides information on the applications of weldable alloys such as aluminum alloys and copper alloys. The article concludes with a discussion on welding of dissimilar metal (nonferrous-to-nonferrous) combinations and its applications.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005581
EISBN: 978-1-62708-174-0
.... (a) Double-sided indentation. (b) Single-sided indentation. Source: Ref 16 Fig. 17 (a) Lap-joined aluminum outlets for a condensator. (b) Lap-joined copper sheet with a thickness of 0.14 mm (0.006 in.) Butt Welding Cold butt welding of wires, bars, or plates end-to-end is performed...
Abstract
Plastic deformation of one or both metals is required to obtain bonding in cold welding. This article presents a theoretical model, to explain the bond strength, based on metallographic studies and continuum mechanical analysis of the local plastic deformation in the weld interface. It describes the bonding mechanisms, with illustrations. The article discusses the alternative methods of surface preparation and quality control of the weld interface of a cold weld. It concludes with a description of a variety of metal-forming processes suitable for production of cold welds, namely, rolling, indentation, butt welding, extrusion, and shear welding.
Book Chapter
Magnetic Pulse Welding
Available to PurchaseSeries: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005595
EISBN: 978-1-62708-174-0
.... A three-dimensional, flat rectangular, one-turn copper coil, such as the one shown in Fig. 8 , can be used for MPW of similar- and dissimilar-metal sheets. The two sheets to be welded are placed between the upper and lower halves of the coil. When the transient current flows through the coil, it produces...
Abstract
This article describes the fundamental theory of magnetic pulse welding (MPW). It reviews the equipment used for MPW, namely, work coil, capacitor bank, high-voltage power supply, high-voltage switches, and field shapers. The article discusses the MPW process and explains the critical parameters needed to obtain acceptable welds. Applications and safety guidelines of the MPW are also presented.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005626
EISBN: 978-1-62708-174-0
... to validate projection weld quality. aluminum aluminum alloys annular projection copper copper alloys cross-wire projection defect sources dissimilar thickness joints embossed-projection welding gage sheet mild steel inspection nut projection projection weld quality projection welding...
Abstract
Projection welding is a variation of resistance welding in which current flow is concentrated at the point of contact with a local geometric extension of one (or both) of the parts being welded. This article focuses on the process fundamentals, advantages, and limitations of projection welding and reviews the equipment used in the process. It discusses projection welding of copper and copper alloys, aluminum and aluminum alloys, and steels. The article provides several specifications and recommended weld schedules and practices for projection welding. It describes the embossed-projection welding of heavy-, intermediate-, and thin-gage sheet mild steel as well as the welds between dissimilar thickness joints. The article also considers the solid-projection welding of steels: annular, nut, and cross-wire projection configurations. It also details the various tests that can be used to validate projection weld quality.
Book Chapter
Engineering Data for Metals and Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003082
EISBN: 978-1-62708-199-3
... Abstract This article contains tables that present engineering data for the following metals and their alloys: aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, zinc, precious metals, permanent magnet materials, pure metals, rare earth metals, and actinide metals. Data presented...
Abstract
This article contains tables that present engineering data for the following metals and their alloys: aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, zinc, precious metals, permanent magnet materials, pure metals, rare earth metals, and actinide metals. Data presented include density, linear thermal expansion, thermal conductivity, electrical conductivity, resistivity, and approximate melting temperature. The tables also present approximate equivalent hardness numbers for austenitic steels, nonaustenitic steels, austenitic stainless steel sheet, wrought aluminum products, wrought copper, and cartridge brass. The article lists conversion factors classified according to the quantity/property of interest.
Series: ASM Handbook
Volume: 6A
Publisher: ASM International
Published: 31 October 2011
DOI: 10.31399/asm.hb.v06a.a0005620
EISBN: 978-1-62708-174-0
... steel and aluminum sheet also finds applications in liquefied natural gas storage tanks and steel supporting structure. Besides joining steel to aluminum to obtain higher strength than that of the base metals, other combinations of interest include: Steel to copper Steel to titanium...
Abstract
This article describes two methods based on rolling of sheet. The first is roll welding, where two or more sheets or plates are stacked together and then passed through rolls until sufficient deformation has occurred to produce solid-state welds. The other is laser roll welding, which is a hybrid process based on a thin-melting interface for a lap joint of dissimilar-metal sheets using a roller and one-sided laser heating. The article discusses the types, advantages, and applications of roll welding and laser roll welding. It also provides a detailed discussion on the laser roll welding of dissimilar metals.
Book Chapter
Brazing With Clad Brazing Materials
Available to PurchaseSeries: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001392
EISBN: 978-1-62708-173-3
... brazing filler alloy (BAlSi series) is clad to the aluminum-base alloy by hot roll bonding. The aluminum-clad brazing sheets can be brazed in a variety of atmospheres, and are used in numerous applications. Another commercial example of a clad brazing material is copper-clad stainless steel sheet...
Abstract
This article focuses on clad brazing material, which is defined as any base material or alloy that is clad with an appropriate lower-melting-point brazing filler metal. It provides information on typical clad brazing strip products in a tabular form and lists the advantages of using clad brazing materials. The article compares the steps in using brazing preforms to fabricate a brazed assembly with the steps involved in using clad brazing materials. It concludes with a discussion on design and manufacturing considerations, during brazing with clad brazing materials.
Book Chapter
Corrosion Resistance of Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003674
EISBN: 978-1-62708-182-5
... to 7%. Several also contain magnesium and/or manganese. The alloys in this series are strengthened by thermal processing. These alloys attain high strengths and are used in sheet, plate, and extruded forms, primarily in aerospace applications. Copper in aluminum alloys generally decreases...
Abstract
This article addresses the general effects of the composition, mechanical treatment, surface treatment, and processing on the corrosion resistance of aluminum and aluminum alloys. There are five major alloying elements: copper, manganese, silicon, magnesium, and zinc, which significantly influence the properties of aluminum alloys. There are organic coatings or paints that provide a barrier between a corrosive environment and aluminum surface. Inorganic coatings, including claddings, and enhanced oxides, such as anodized films, Boehmite films, and conversion coatings also help in corrosion prevention. The article assists in the information on selection of fabrication operations, as they play an important role in corrosion resistance.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006529
EISBN: 978-1-62708-207-5
... Abstract Brazing technology is continually advancing for a variety of metals including aluminum and its alloys and nonmetals. This article discusses the key physical phenomena in aluminum brazing and the materials for aluminum brazing, including base metals, filler metals, brazing sheet...
Abstract
Brazing technology is continually advancing for a variety of metals including aluminum and its alloys and nonmetals. This article discusses the key physical phenomena in aluminum brazing and the materials for aluminum brazing, including base metals, filler metals, brazing sheet, and brazing flux. It describes various aluminum brazing methods, such as furnace, vacuum, dip, and torch brazing. Friction, flow, induction, resistance, and diffusion brazing are some alternate brazing methods discussed. The article reviews the brazing of aluminum to ferrous alloys, aluminum to copper, and aluminum to other nonferrous metals. It also discusses post-braze processes in terms of post-braze heat treatment and finishing. The article concludes with information on the safety precautions considered in brazing aluminum alloys.
1