Skip Nav Destination
Close Modal
Search Results for
copper cable
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 262 Search Results for
copper cable
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003133
EISBN: 978-1-62708-199-3
... Abstract This article provides an overview of the classification system of coppers for conductors and for wires and cables, as well as wire rod fabrication techniques such as rolling and continuous casting. Wiredrawing and wire stranding operations, including the preparation of rod surface...
Abstract
This article provides an overview of the classification system of coppers for conductors and for wires and cables, as well as wire rod fabrication techniques such as rolling and continuous casting. Wiredrawing and wire stranding operations, including the preparation of rod surface, drawing, production of flat rectangular wire, annealing, and coating, are discussed. The article also provides information on electrical insulation and jacketing techniques, including polymeric insulation, enamel insulation, and paper-and-oil insulation.
Image
Published: 01 January 2003
Fig. 3 Galvanic corrosion of aluminum in buried power cable splice (copper to aluminum). Courtesy of R. Baboian, Texas Instruments, Inc.
More
Image
Published: 01 December 2004
Fig. 10 Copper-bearing lead (0.04 to 0.08% Cu); cross section of cable sheath with 2.7 mm (0.105 in.) wall thickness. The grains contain lead-copper eutectic, which forms at a copper content of 0.06%. (NH 4 ) 2 MoO 4 , then acetic-nitric acid. Original magnification 10×
More
Image
Published: 01 December 2004
Fig. 11 Copper-bearing lead (0.15% Cu); section through wall of cable sheath showing intergranular cracks (black areas in center) that resulted from creep. (NH 4 ) 2 MoO 4 , then acetic-nitric acid. Original magnification 75×
More
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001066
EISBN: 978-1-62708-162-7
... to produce wrought copper and copper alloys in the form of sheet and strip products, tubular products, and wire and cable. Common processes include melting, casting, hot and cold rolling, milling or scalping, annealing, cleaning, slitting, cutting, and leveling. In addition, the article discusses stress...
Abstract
Wrought copper and copper alloys are produced in various mill-product forms for a variety of applications due to their high electrical conductivity, corrosion resistance, ease of fabrication, and good heat-transfer properties. This article describes the manufacturing processes used to produce wrought copper and copper alloys in the form of sheet and strip products, tubular products, and wire and cable. Common processes include melting, casting, hot and cold rolling, milling or scalping, annealing, cleaning, slitting, cutting, and leveling. In addition, the article discusses stress-relaxation characteristics of copper alloys.
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003146
EISBN: 978-1-62708-199-3
...% Pb, 0.008–0.03% Ca) L50710, L50720 Cable-sheathing alloys (0.025% Ca, 99.7–99.9% Pb, 0.0–0.025% Sn) L50712, L50713 Lead-copper-calcium alloy (99.9% Pb, 0.06% Cu, 0.03% Ca) L50722 Electrowinning anode alloy (0.5% Ag, 99.4% Pb, 0.05% Ca) L50730 Battery grid alloy (99.9% Pb, 0.06% Ca...
Abstract
This article discusses the properties, primary and secondary production, product forms and applications of various grades of lead and lead-base alloys with the aid of several tables and illustrations. It lists the Unified Numbering System (UNS) designations for various pure lead grades and lead-base alloys grouped according to nominal chemical composition. The properties of lead that make it useful in a wide variety of applications are also discussed. The largest use of lead is in lead-acid storage batteries. Other applications include ammunition, cable sheathing, cast products such as type metals, terneplate, foils, and building construction materials. Lead is also used as an alloying element in steel and in copper alloys to improve machinability. The article concludes with information on the principles of lead corrosion, corrosion resistance of lead in water, atmospheres, underground ducts, soil and chemicals.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001078
EISBN: 978-1-62708-162-7
...–0.03% Ca) L50710, L50720 Cable-sheathing alloys (0.025% Ca, 99.7–99.9% Pb, 0.0–0.025% Sn) L50712, L50713 Lead-copper-calcium alloy (99.9% Pb, 0.06% Cu, 0.03% Ca) L50722 Electrowinning anode alloy (0.5% Ag, 99.4% Pb, 0.05% Ca) L50730 Battery grid alloy (99.9% Pb, 0.06% Ca) L50735...
Abstract
This article discusses the processing, properties, and applications of various grades of lead and lead-base alloys with the aid of several tables and illustrations. It lists the Unified Numbering System (UNS) designations for various pure lead grades and lead-base alloys grouped according to nominal chemical composition. The properties of lead that make it useful in a wide variety of applications are also discussed. The largest usage of lead is in the lead acid storage batteries (in the grid plates, posts, and connector straps). Other applications include ammunition; cable sheathing; cast products such as type metals, terneplates, and foils; and building construction materials. Lead is also used as an alloying element in steel and in copper alloys to improve machinability and other characteristics. In many applications, lead is combined with stronger materials to make structures that have the best qualities of both materials such as the plumbum series.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001110
EISBN: 978-1-62708-162-7
..., and greater compatibility with copper stabilizing materials. This article discusses the ramifications of design requirements, selection criteria and processing methods of superconducting fibers and matrix materials. It provides information on the various steps involved in the fabrication of superconducting...
Abstract
Niobium-titanium alloys (NbTi) became the superconductors of choice in the early 1960s, providing a viable alternative to the A-15 compounds and less ductile alloys of niobium-zirconium. This can be attributed to the relative ease of fabrication, better electrical properties, and greater compatibility with copper stabilizing materials. This article discusses the ramifications of design requirements, selection criteria and processing methods of superconducting fibers and matrix materials. It provides information on the various steps involved in the fabrication of superconducting composites, including assembly, welding, isostatic compaction, extrusion, wire drawing, twisting, and final sizing. The article also provides a detailed account of the properties and applications of NbTi superconducting composites.
Image
Published: 01 January 2003
Fig. 2 Galvanic corrosion of aluminum shielding in buried telephone cable coupled to buried copper plates. Courtesy of R. Baboian, Texas Instruments, Inc.
More
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001111
EISBN: 978-1-62708-162-7
... or coextruding. Such processing of the brittle conductor requires careful control over strain to avoid filament breakage. Deposited thick-film conductors may have aluminum or copper added by soldering or electrodeposition. Copper or aluminum may also be added in a cabling step. Noncopper As described...
Abstract
This article reviews the phase diagrams, alloy with third element additions, layer growth, critical current density, and matrix materials of A15 superconductors. It describes the production methods of tape conductors (chloride deposition, and surface diffusion) and multifilamentary wires (rod process, modified jelly roll process, niobium tube process, in-situ process, powder metallurgy process, and jelly roll method). The article focuses on reaction heat treatment, which is required at the end of wire processing to convert the ductile components to the desired, but brittle, superconductor. Finally, it discusses the applications of A15 superconductors in commercial magnets, power generation, power transmission, high-energy physics, and fusion.
Image
Published: 01 January 1993
position Flat Travel speed 0.14 m/min (5.5 in./s) (a) Modified by elimination of ceramic cup and by use of bare connection cable to avoid the presence of organic material in the chamber. (b) Copper chill-block clamping fixture held by a small chuck that was rotated by a variable-speed drive
More
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004139
EISBN: 978-1-62708-184-9
... battery cables of 33 mm 2 (0.05 in. 2 ) (American wire gage, or AWG, 2) size is recommended. Automotive or welding cable and clamp-on or solder-on battery clamps are not satisfactory. Preassembled marine cables consist of heavy-duty tinned copper terminal ends and tinned fine-strand copper wire. The ends...
Abstract
This article focuses on the corrosion and deterioration of components on recreational and small workboats. It discusses the materials selection and corrosion control for the components. These components include hulls, fittings, fasteners, metal deck gear, winches, backing plates, lifeline supports, inboard engines, cooling systems, propulsion systems, electrical and electronic systems, plumbing systems, masts, spars, and rigging.
Series: ASM Handbook
Volume: 2
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v02.a0001065
EISBN: 978-1-62708-162-7
... are readily available. Copper alloys can be polished and buffed to almost any desired texture and luster. They can be plated, coated with organic substances, or chemically colored to further extend the variety of available finishes. Pure copper is used extensively for cables and wires, electrical contacts...
Abstract
Copper and copper alloys constitute one of the major groups of commercial metals due to their excellent electrical and thermal conductivities, corrosion and fatigue resistance, ease of fabrication, and good strength. This article lists the types, properties, fabrication characteristics, corrosion ratings, temper designations, and applications of wrought copper and copper alloys. It also presents an outline of the most commonly used mechanical working and heat treating processes. The copper industry in the United States is broadly composed of two segments: producers (mining, smelting, and refining companies) and fabricators (wire mills, brass mills, foundries, and powder plants). The article discusses copper production methods and describes major changes in the structure of the U.S. copper and copper alloys industry.
Book: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003819
EISBN: 978-1-62708-183-2
... record of service in exposure to the atmosphere and to water that its resistance to corrosion by these media is often taken for granted. Underground, thousands of kilometers of lead-sheathed cable and lead pipe give reliable long-term performance all over the world. In the chemical industry, lead is used...
Abstract
The rate and form of corrosion that occur in a particular situation depend on many complex variables. This article discusses the rate of corrosion of lead in natural and domestic water depending on the degree of water hardness caused by calcium and magnesium salts. Lead exhibits consistent durability in all types of atmospheric exposure, including industrial, rural, and marine. The article tabulates the corrosion of lead in various natural outdoor atmospheres and the corrosion of lead alloys in various soils. It explains the factors that influence in initiating or accelerating corrosion: galvanic coupling, differential aeration, alkalinity, and stray currents. The resistance of lead and lead alloys to corrosion by a wide variety of chemicals is attributed to the polarization of local anodes caused by the formation of a relatively insoluble surface film of lead corrosion products. The article also provides information on the corrosion rate of lead in chemical environments.
Book Chapter
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001380
EISBN: 978-1-62708-173-3
..., 33:34:33 0.10–0.15 0.004–0.006 12.7–150 0.5–6 415 (d) 60 (d) 275 40 20 (d) Replaces heavier gapes of copper and bronze in buried communications cable. The stainless steel provides resistance to gnawing by rodents, which is a serious problem in underground installations. Phosphor...
Abstract
Roll welding (ROW) is a process in which two or more sheets or plates are stacked together and then passed through the rolls until sufficient deformation has occurred to produce solid-state welds. This article begins with a process description of two modes of roll welding, including pack rolling. It describes a patented roll welding process for fabrication of heat exchangers. The article presents a table showing the typical properties of common roll welded clad laminates. The relative weldability of selected dissimilar metals and alloys roll welded into clad-laminate form are also tabulated. The article concludes with information on cladding of metals by strip roll welding.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001448
EISBN: 978-1-62708-173-3
... Joining of copper tube closures for heating, ventilating, and air conditioning (HVAC) industry Joining of brass U-shaped section to a brass plate for a brush holder Joining of copper steel laminate to itself for a communications cable sheathing Precious Metals Most of the precious metals...
Abstract
Ultrasonic welding (USW) is effectively used to join both similar and dissimilar metals with lap-joint welds. This article describes procedure considerations for the ultrasonic welding of specific material types. It reviews difficult-to-weld alloys, such as carbon and low-alloy steels, high-strength steels, and stainless steel, and provides information on the applications of weldable alloys such as aluminum alloys and copper alloys. The article concludes with a discussion on welding of dissimilar metal (nonferrous-to-nonferrous) combinations and its applications.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004130
EISBN: 978-1-62708-184-9
..., copper alloy, nickel alloy, titanium and titanium alloys, aluminum alloys, stainless steels, and carbon steel in immersion environments. aluminum alloys atmospheric corrosion carbon steel copper alloys microbiologically influenced corrosion nickel alloys stainless steels titanium alloys...
Abstract
This article focuses on microbiologically influenced corrosion (MIC) of military assets. It discusses the mechanisms of MIC in hydrocarbon fuels and atmospheric, immersion, and buried environments with specific examples. The article describes the behavior of metals and alloys, namely, copper alloy, nickel alloy, titanium and titanium alloys, aluminum alloys, stainless steels, and carbon steel in immersion environments.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004129
EISBN: 978-1-62708-184-9
... the equipment operational. The basic corrosion concerns of the 1960s were the deterioration of the physical properties of the materials involved in electronic equipment. A report in 1967 compared the fungus resistance of vinyl polymer insulating cable coverings ( Ref 4 ). A 1963 Bell Telephone Labs report...
Abstract
This article provides a historical review of corrosion problems in military electronic equipment. It describes the importance of design for corrosion control of an electronic black box used to contain electrical equipment that provides various functions. The article illustrates corrosion control aspects, such as the position of printed circuit boards (PCBs) and proper location of connectors for insertion of the PCBs. It discusses various materials and alloys considered for connectors, PCB contacts, and circuits. The article concludes with a discussion on the effects of contaminants on the electronic black box.
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001485
EISBN: 978-1-62708-173-3
...; aluminum; nickel; copper alloys; and other nonferrous metals. Principles of Operation Like electric arc welding, the CAC-A process requires an arc of intense heat to develop a molten pool on the workpiece. Compressed air then blows away this molten metal. The process requires a welding power source...
Book Chapter
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003136
EISBN: 978-1-62708-199-3
... Abstract Copper and copper alloys are used extensively in structural applications in which they are subject to moderately elevated temperatures. At relatively low operating temperatures, these alloys can undergo thermal softening or stress relaxation, which can lead to service failures...
Abstract
Copper and copper alloys are used extensively in structural applications in which they are subject to moderately elevated temperatures. At relatively low operating temperatures, these alloys can undergo thermal softening or stress relaxation, which can lead to service failures. This article is a collection of curves and tables that present data on thermal softening and stress-relaxation in copper and copper alloys. Thermal softening occurs over extended periods at temperatures lower than those inducing recrystallization in commercial heat treatments. Stress relaxation occurs because of the transformation of elastic strain in the material to plastic, or permanent strain.
1