Skip Nav Destination
Close Modal
Search Results for
cope and drag patterns
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 67
Search Results for cope and drag patterns
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2008
Image
Published: 01 December 2008
Image
Published: 01 December 2008
Fig. 1 Major components of a sand mold. (a) Pattern assembly for cope and drag sections of a mold. (b) Cross section of sand mold assembly with core
More
Image
Published: 01 December 2008
Fig. 2 Major components of a sand mold (a) pattern assembly for cope and drag sections. (b) Cross section of mold with core
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005308
EISBN: 978-1-62708-187-0
... Abstract This article discusses the types of patterns used for a specific application such as loose patterns, match plate patterns, cope and drag patterns, and special patterns. It describes the principles of the patternmaking techniques used to make expendable molds and for metal casting...
Abstract
This article discusses the types of patterns used for a specific application such as loose patterns, match plate patterns, cope and drag patterns, and special patterns. It describes the principles of the patternmaking techniques used to make expendable molds and for metal casting processes such as die casting and permanent mold casting. The article reviews the pattern features and mold production considerations used in the pattern design, namely, parting line considerations, addition of gates and risers, core prints, and locating points. It examines the pattern allowances for ensuring a dimensionally correct final pattern. A variety of materials and advanced composite materials used in the manufacture of patterns are discussed. The article evaluates the factors influencing the selection of type of patterns for specific castings.
Image
Published: 01 December 2008
is released from the flask (step 7 in Fig. 3 ), the sand-filled flask is kept under vacuum and placed on the pouring line, as shown here for the drag portion of the mold. (h) The cope portion (produced in similar fashion) is placed over the drag portion of the mold to form a cope-and-drag assembly
More
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005251
EISBN: 978-1-62708-187-0
... pattern to produce the hollow cavity for the final casting in the finished mold. The control factors of the V-process that may affect the quality of the castings are the molding sand, vibration frequency, vibrating time, degree of vacuum imposed, and pouring temperature. Fig. 2 Cope-and-drag...
Abstract
This article describes the process and advantages of no-bond methods of vacuum molding and magnetic molding, with schematic illustrations. It also discusses the characteristics of plastic film and dimensional specifications of vacuum molding.
Image
Published: 01 December 2008
Fig. 2 Three types of patterns used to produce a water pump casting in various quantities. (a) Wood pattern on a follow board, good for 20 to 30 castings. (b) Match plate pattern for up to 50,000 castings depending on material. (c) Cope and drag plastic (up to 20,000 castings) or metal
More
Image
Published: 01 December 2008
Fig. 5 Motorcycle cylinder that was cast in a shell mold made using the cope-and-drag pattern shown
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005249
EISBN: 978-1-62708-187-0
... method of plaster molding. Changes in details of the conventional method ensure high accuracy and smooth surface finish, which are required in metal match plate patterns. Common dimensional requirements for match plate patterns are: Match between the cope and drag, within 0.25 mm (0.010...
Abstract
This article discusses slurry molding that encompasses two distinct processes: plaster molding and ceramic molding. Plaster mold casting is a specialized casting process used to produce nonferrous castings that have greater dimensional accuracy, smoother surfaces, and more finely reproduced detail. The article describes three generally recognized plaster mold processes, namely, conventional plaster mold casting, the Antioch process, and the foamed plaster process. Ceramic molding techniques are based on processes that employ permanent patterns and fine-grained zircon and calcined, high-alumina mullite slurries for molding. The Shaw process and the proprietary Unicast processes are also discussed.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005243
EISBN: 978-1-62708-187-0
... to the cost. Sand Molding The basic steps involved in making a sand-flask mold from a permanent pattern are shown in Fig. 1 . The sequence begins with a mechanical drawing of the desired part. Patterns are then produced and mounted on pattern plates. Both the cope and drag patterns include core...
Abstract
Green sand molding and chemically bonded sand molding are considered to be the most basic and widely used mold-making processes. This article describes the sand system formulation, preparation, mulling, mold fabrication, and handling of green sand molds. It lists the advantages and disadvantages of green sand molding. The article discusses the primary control parameters for the sand system formulation. It describes two basic types of green sand molds: flask molds and flaskless molds. The article provides a discussion on molding problems, including springback and expansion defects. It considers a variety of sand reclamation systems, including wet washing/scrubbing and thermal-calcining/thermal-dry scrubbing combinations.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005241
EISBN: 978-1-62708-187-0
... patterns are removed after the sand is bonded in a flask in cope-and-drag sections ( Fig. 1 ). Cores are separate shapes that are placed in the mold to provide castings with contours, cavities, and passages that are not practical or obtainable with molds. Patterns may be permanent (as is typical in sand...
Abstract
Casting can be done with either expendable molds for one-time use or permanent molds for reuse many times. This article lists the various methods used to fabricate expendable molds from permanent patterns. The methods include molding of sand with clay, inorganic binders, or organic resins; shell molding of sand with a thin resin-bonded shell; no-bond vacuum molding of sand; plaster-mold casting; ceramic-mold casting; rammed graphite molding; and magnetic (no-bond) molding of ferrous shot. The article tabulates a general comparison of casting methods and discusses the basic requirements of foundry molds.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003170
EISBN: 978-1-62708-199-3
... are placed in the drag, or bottom section, of the mold, and the mold is then closed by placing the cope, or top section, over the drag. Mold closing completes the production of the mold, into which the molten metal is then poured. Casting production begins with melting of the metal (left side of Fig. 1...
Abstract
Metal casting is the manufacturing method in which a metal or an alloy is melted, poured into a mold, and allowed to solidify. Typical uses of castings include municipal hardware, water distribution systems (pipes, pumps, and valves), automotive components (engine blocks, brakes, steering and suspension components, etc.), prosthetics, and gas turbine engine hardware. This introduction explains the steps involved in making a casting using a simplified flow diagram, and discusses the ferrous and nonferrous alloys used for metal casting.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009018
EISBN: 978-1-62708-187-0
...); pattern and rigging, in (m). In a redesign, Fig. 14(j) , the parting line was located at the centerline of the housing, and the boss was placed in the cope half of the mold at right angles to the parting line. Four ribs (of which one is the tubular shape) spaced 90° apart replaced the three-rib...
Abstract
This article begins with a schematic illustration of basic principles of sand molding. It discusses the general design factors, such as parting lines, location of radii, bosses and undercuts, and rib locations, of sand molding. The article schematically demonstrates alternative design solutions to molding and coring problems and describes the molding sequence. Draft refers to the amount of taper given to the sides of a pattern to enable it to be withdrawn easily from the mold. The article concludes with a simple example demonstrating the influence of a casting requirement on the direction of draft.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003172
EISBN: 978-1-62708-199-3
... is filled with sand and completely compacted, the mold is turned over and the pattern withdrawn. The procedure is repeated for the cope half of the mold. The cope is placed on the drag, and metal or wooden “jackets” are placed around the parting line to align the two halves and prevent metal from running...
Abstract
This article discusses classification of foundry processes based on the molding medium, such as sand molds, ceramic molds, and metallic molds. Sand molds can be briefly classified into two types: bonded sand molds, and unbonded sand molds. Bonded sand molds include green sand molds, dry sand molds, resin-bonded sand molds, and sodium silicate bonded sand. The article describes the casting processes that use these molds, including the no-bake process, cold box process, hot box process, the CO2 process, lost foam casting process and vacuum molding process. The casting processes that use ceramic molds include investment casting, and plaster casting. Metallic molds are used in permanent mold casting, die casting, semisolid casting, and centrifugal casting.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005338
EISBN: 978-1-62708-187-0
... Rammed Graphite Casting Molds for zirconium can be produced using wood, plastic, composite, or metal patterns. These molds are produced from patterns similar to those used for other metals. Conventional rammed graphite molding uses the standard cope and drag patterns, with or without cores. Cope...
Abstract
This article describes typical foundry practices used to commercially produce zirconium castings. The foundry practices are divided into two sections, namely, melting and casting. The article discusses various melting processes, such as vacuum arc skull melting, induction skull melting, and vacuum induction melting. Various casting processes, such as rammed graphite casting, static and centrifugal casting, and investment casting are reviewed. The article also provides information on the mechanical and chemical properties of zirconium castings.
Book Chapter
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0009017
EISBN: 978-1-62708-187-0
... be made before the actual sizes of the various components can be calculated. Runner and Ingate Figures 1 and 2 show gating systems with ingates coming off the top of the runner and then into the casting. This arrangement of cope ingates and drag runners is common and has the advantages...
Abstract
A gating system is the conduit network through which liquid metal enters a mold and flows to fill the mold cavity, where the metal can then solidify to form the desired casting shape. This article discusses various desirable design considerations for the gating system. Proper design of an optimized gating system will be made easier by the application of several fundamental principles of fluid flow. The article illustrates the Bernoulli's theorem, the law of continuity, and the effect of momentum. Most casting alloys are subject to the presence of particles that can deleteriously affect the physical properties and appearance of the casting. The article lists a variety of adverse effects of the particles. Ceramic filters, when correctly applied, can be relied on to trap particles before they can enter the casting cavity. The article concludes with information on the advantages and the types of the ceramic filters.
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006297
EISBN: 978-1-62708-179-5
... Abstract Aggregate molding, or sand casting, is the gravity pouring of liquid metal into a mold that is made of a mixture molded against a permanent pattern. This article summarizes the most important materials in the process of sand casting of cast iron, including different types of molding...
Abstract
Aggregate molding, or sand casting, is the gravity pouring of liquid metal into a mold that is made of a mixture molded against a permanent pattern. This article summarizes the most important materials in the process of sand casting of cast iron, including different types of molding aggregates, clays, water, and additives in green sand, chemically bonded organic resins, and inorganic binders in self-setting, thermosetting, and gas-triggered systems. It discusses three main types of reclamation systems: wet, dry, and thermal. The article concludes with a description of both nonpermanent and permanent mold processes.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006533
EISBN: 978-1-62708-207-5
... to increase productivity and complexity. The major parts of a typical horizontal mold are presented in Fig. 9 . A plate with patterns for both cope and drag mounted on opposite faces is called a match plate. Both cope and drag halves of the mold are alternately filled with prepared sand before being...
Abstract
Sand casting processes are typically classified according to the type of binder present in the molding sand mixture. This article discusses common sand casting processes and design considerations related to shape, gating, feeding, and pattern making methods. It describes the composition of sand and binder normally used, and provides information on the aluminum casting alloys produced. The article discusses precision sand casting and sand reclamation, and includes information on health and safety considerations.
Book Chapter
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006338
EISBN: 978-1-62708-179-5
...: Projections with rough surfaces A 221 (a) Projections with rough surfaces on the cope surface of the casting Mold drop or sticker A 114 (a) Thin projection parallel to a casting surface, in re-entrant angles Fillet scab A 115 Thin metallic projection located at a re-entrant angle...
Abstract
The International Committee of Foundry Technical Associations has identified seven basic categories of casting defects: metallic projections, cavities, discontinuities, defective surfaces, incomplete casting, incorrect dimension, and inclusions or structural anomalies. This article presents some of the common defects in each of the seven categories in a table. It discusses common defects determined during the examination of samples of ductile cast iron in Elkem's research facility in Norway. The article reviews common defects, such as shrinkage cavities, blowholes, hydrogen pinholes, nitrogen defects, and abnormal graphite morphology, found in gray iron. It concludes with a discussion on surface defects in compacted graphite iron.
1