Skip Nav Destination
Close Modal
Search Results for
cooling towers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 169 Search Results for
cooling towers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 09 June 2014
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005851
EISBN: 978-1-62708-167-2
... Abstract Cooling towers are designed to remove heat from water in an induction system and dissipate it into the atmosphere. This article provides information on closed-loop recirculating water systems of an induction system to cool the power supply. It focuses on various types of cooling towers...
Abstract
Cooling towers are designed to remove heat from water in an induction system and dissipate it into the atmosphere. This article provides information on closed-loop recirculating water systems of an induction system to cool the power supply. It focuses on various types of cooling towers, namely, air-cooled heat exchangers, air-cooled heat exchangers with trim cooler, closed-circuit evaporative cooling towers, and open evaporative cooling towers. The article discusses the importance of their placement or positioning to reduce the chances of air recirculation, and concludes with a discussion on refrigerant chillers.
Image
Published: 09 June 2014
Image
Published: 09 June 2014
Fig. 4 Schematic of induction cooling system with air-cooled tower with a water-to-water trim cooler. Courtesy of Dry Coolers Inc.
More
Image
Published: 01 January 2002
Fig. 12 Carbon steel discharge line at a cooling tower that failed because of poor fit-up at Y-joint and poor-quality welds. (a) Original joint design of pipe connection and location of cracks. Photograph is an oblique view of a section through the weldment showing the abrupt intersection
More
Image
Published: 01 January 2002
Fig. 22 Carbon steel discharge line at a cooling tower that failed because of poor fit-up at Y-joint and poor-quality welds. (a) Original joint design of pipe connection and location of cracks. Photograph is an oblique view of a section through the weldment, showing the abrupt intersection
More
Image
in Failure Analysis of Heat Exchangers
> Analysis and Prevention of Component and Equipment Failures
Published: 30 August 2021
Fig. 12 Carbon steel discharge line at a cooling tower that failed because of poor fit-up at Y-joint and poor-quality welds. (a) Original joint design of pipe connection and location of cracks. Photograph is an oblique view of a section through the weldment showing the abrupt intersection
More
Image
Published: 09 June 2014
Image
Published: 09 June 2014
Image
Published: 09 June 2014
Fig. 6 Counter-flow closed-loop pressurized evaporative cooling tower, which requires a pan heater
More
Image
Published: 09 June 2014
Fig. 7 Schematic of a closed-loop pressurized evaporative cooling tower. Courtesy of Dry Coolers Inc.
More
Image
Published: 09 June 2014
Series: ASM Handbook Archive
Volume: 11
Publisher: ASM International
Published: 01 January 2002
DOI: 10.31399/asm.hb.v11.a0003556
EISBN: 978-1-62708-180-1
... Abstract This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses...
Abstract
This article focuses on the mechanisms of microbially induced or influenced corrosion (MIC) of metallic materials as an introduction to the recognition, management, and prevention of microbiological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It discusses the degradation of various protective systems, such as corrosion inhibitors and lubricants. The article describes the failure analysis of steel, iron, copper, aluminum, and their alloys. It also discusses the probes available to monitor conditions relevant to MIC in industrial systems and the sampling and analysis of conditions usually achieved by the installation of removable coupons in the target system. The article also explains the prevention and control strategies of MIC in industrial systems.
Series: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006788
EISBN: 978-1-62708-295-2
... Abstract This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope...
Abstract
This article focuses on the mechanisms of microbiologically influenced corrosion as a basis for discussion on the diagnosis, management, and prevention of biological corrosion failures in piping, tanks, heat exchangers, and cooling towers. It begins with an overview of the scope of microbial activity and the corrosion process. Then, various mechanisms that influence corrosion in microorganisms are discussed. The focus is on the incremental activities needed to assess the role played by microorganisms, if any, in the overall scenario. The article presents a case study that illustrates opportunities to improve operating processes and procedures related to the management of system integrity. Industry experience with corrosion-resistant alloys of steel, copper, and aluminum is reviewed. The article ends with a discussion on monitoring and preventing microbiologically influenced corrosion failures.
Series: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004102
EISBN: 978-1-62708-184-9
... tower. Two typical designs are shown in Fig. 1 and Fig. 2 . There are numerous variations on these designs. Fig. 1 Typical arrangement where raw water is used in service water system and as makeup to the cooling tower. Because the condenser loop is an open-recirculating system, make-up water...
Abstract
This article describes the corrosion mechanisms, challenges, and control methods in service water distribution systems. It provides a discussion on typical designs and water qualities for distribution systems used in fossil-fueled and nuclear power plants. The article also explains the techniques for controlling corrosion in service water systems.
Image
Published: 09 June 2014
Fig. 25 Diverting heat losses through (a) water-water heat exchanger, (b) enclosed cooling tower, and (c) air/water cooler
More
Image
Published: 01 January 2006
Fig. 2 In a once-through service water and circulating water system without a cooling tower large quantities of water are circulated through the systems and back to the source.
More
Image
Published: 01 January 2006
Fig. 1 Typical arrangement where raw water is used in service water system and as makeup to the cooling tower. Because the condenser loop is an open-recirculating system, make-up water is needed to replace evaporation and blowdown.
More
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005850
EISBN: 978-1-62708-167-2
.... Cooling towers are outdoor machines that are designed to dissipate heat into the atmosphere. There are two types: heat exchanger towers and evaporative towers. The suggested water quality requirements for both dry and evaporative cooling towers are: Total hardness as CaC0 3 100 ppm Total...
Abstract
Hardness testing equipment is important as all results from the induction equipment are graded by the hardness testing equipment. This article includes maintenance tips and points to consider regarding hardness test equipment, power supplies, controls, programmable logic controllers, computer systems, water cooling systems, fixtures and machines, air-operated or pneumatic devices, coils, and quench systems. It also presents simple rules that need to be applied while moving the equipment from one location to another.
Image
Published: 09 June 2014
Fig. 9 Schematic of an induction cooling system with open evaporative tower and plate heat exchanger with emergency city water option. Courtesy of Dry Coolers Inc.
More
1