Skip Nav Destination
Close Modal
By
James F. Lane, Daniel P. Dennies
By
Barry Meyers, Stephen Lynn, Elwin Jang
By
Andrew Fee
Search Results for
conversion table
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 1004
Search Results for conversion table
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 January 1994
Book Chapter
Steel Hardness Conversions
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004043
EISBN: 978-1-62708-185-6
... Abstract Hardness conversions are empirical relationships that are defined by conversion tables limited to specific categories of materials. This article summarizes hardness conversion formulas for various materials in a table. It tabulates the approximate Rockwell B and Rockwell C hardness...
Abstract
Hardness conversions are empirical relationships that are defined by conversion tables limited to specific categories of materials. This article summarizes hardness conversion formulas for various materials in a table. It tabulates the approximate Rockwell B and Rockwell C hardness conversion numbers for nonaustenitic steels. The article lists the approximate equivalent hardness numbers for Brinell hardness numbers and Vickers hardness numbers for steel in tables. The tables are also outlined in a graphical form.
Book Chapter
Steel Hardness Conversions
Available to PurchaseSeries: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0006001
EISBN: 978-1-62708-168-9
... Abstract Hardness conversions are empirical relationships that are defined by conversion tables limited to specific categories of materials. This article is a comprehensive collection of tables that list hardness conversion formulas. Approximate Rockwell B and C hardness conversion numbers...
Abstract
Hardness conversions are empirical relationships that are defined by conversion tables limited to specific categories of materials. This article is a comprehensive collection of tables that list hardness conversion formulas. Approximate Rockwell B and C hardness conversion numbers for nonaustenitic steels, and approximate equivalent hardness numbers for Brinell and Vickers (diamond pyramid) hardness numbers for steels are provided.
Book Chapter
Hardness Conversions for Steels
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003278
EISBN: 978-1-62708-176-4
... Abstract Hardness conversions are empirical relationships defined by conversion tables limited to specific categories of materials. This article is a collection of tables that present approximate Rockwell B hardness conversion numbers for nonaustenitic steels as per ASTM E 140 and approximate...
Abstract
Hardness conversions are empirical relationships defined by conversion tables limited to specific categories of materials. This article is a collection of tables that present approximate Rockwell B hardness conversion numbers for nonaustenitic steels as per ASTM E 140 and approximate equivalent hardness numbers for the Brinell hardness and the Vickers (diamond pyramid) hardness numbers for steel.
Book Chapter
Grit Sizes and Grain Size Conversions
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003726
EISBN: 978-1-62708-177-1
... Abstract This article contains a conversion table, which assists in the conversion of ASTM number to average grain intercept length. It also includes a table that lists European and U.S. grit numbers with their approximate particle size for metallographic grinding papers. grain intercept...
Abstract
This article contains a conversion table, which assists in the conversion of ASTM number to average grain intercept length. It also includes a table that lists European and U.S. grit numbers with their approximate particle size for metallographic grinding papers.
Book Chapter
Steel Hardness Conversions
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005184
EISBN: 978-1-62708-186-3
... Abstract Hardness conversions are empirical relationships that are defined by conversion tables limited to specific categories of materials. This article tabulates examples of the published hardness conversion equations for various materials including steels, cement carbides, and white cast...
Abstract
Hardness conversions are empirical relationships that are defined by conversion tables limited to specific categories of materials. This article tabulates examples of the published hardness conversion equations for various materials including steels, cement carbides, and white cast irons. It informs that when making hardness correlations, it is best to consult ASTM E 140. The article tabulates the approximate Rockwell B hardness and Rockwell C hardness conversion numbers for nonaustenitic steels according to ASTM E 140. It also tabulates the approximate equivalent hardness numbers for Brinell hardness numbers and Vickers (diamond pyramid) hardness numbers for steel.
Book Chapter
Corrosion Rate Conversion
Available to PurchaseSeries: ASM Handbook
Volume: 13C
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v13c.a0004226
EISBN: 978-1-62708-184-9
... Abstract This article contains a corrosion rate conversion table and a figure that show the relationships among some of the units commonly used for corrosion rates of metals. corrosion rate metals Relationships among some of the units commonly used for corrosion rates Table 1...
Abstract
This article contains a corrosion rate conversion table and a figure that show the relationships among some of the units commonly used for corrosion rates of metals.
Book Chapter
Corrosion Rate Conversion
Available to PurchaseSeries: ASM Handbook
Volume: 13A
Publisher: ASM International
Published: 01 January 2003
DOI: 10.31399/asm.hb.v13a.a0003717
EISBN: 978-1-62708-182-5
... Abstract This article contains a corrosion rate conversion table and a figure that shows the relationships among some of the units commonly used for corrosion rates of metals. corrosion rate metals Relationships among some of the units commonly used for corrosion rates Table 1...
Abstract
This article contains a corrosion rate conversion table and a figure that shows the relationships among some of the units commonly used for corrosion rates of metals.
Book Chapter
Corrosion Rate Conversion
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003794
EISBN: 978-1-62708-183-2
... Abstract This article contains a corrosion rate conversion table, and a figure, that illustrate relationships among some of the units commonly used for corrosion rates of metals. corrosion rate Relationships among some of the units commonly used for corrosion rates Table 1...
Abstract
This article contains a corrosion rate conversion table, and a figure, that illustrate relationships among some of the units commonly used for corrosion rates of metals.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006521
EISBN: 978-1-62708-207-5
... on the processes of low-solubility oxide, phosphate, and chromate conversion coating. Some applications using chemical conversion coatings on various aluminum alloys are given in a table. The article also provides information on the advantages and disadvantages of chromate conversion coatings. It concludes...
Abstract
Chemical conversion coatings are adherent surface layers of low-solubility oxide, phosphate, chromate, and chromate-free compounds produced by the reaction of suitable reagents with the metallic surface. This article provides an overview on chromate-free coatings, along with coverage on the processes of low-solubility oxide, phosphate, and chromate conversion coating. Some applications using chemical conversion coatings on various aluminum alloys are given in a table. The article also provides information on the advantages and disadvantages of chromate conversion coatings. It concludes a discussion on organic-based coatings.
Book Chapter
Reference Electrodes
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0003799
EISBN: 978-1-62708-183-2
.... The article contains a table that lists the electrode potentials and conversion factors for various reference electrodes. electrode potential temperature coefficients isothermal temperature coefficient thermal temperature coefficient reference electrode THE FOLLOWING INFORMATION is a tool...
Abstract
This article discusses a tool for the conversion of measurements made against various reference electrodes at different temperatures. It reviews different electrode potential temperature coefficients, namely, isothermal temperature coefficient and thermal temperature coefficient. The article contains a table that lists the electrode potentials and conversion factors for various reference electrodes.
Book Chapter
Engineering Data for Metals and Alloys
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003082
EISBN: 978-1-62708-199-3
... products, wrought copper, and cartridge brass. The article lists conversion factors classified according to the quantity/property of interest. conversion factors electrical conductivity engineering data linear thermal expansion melting temperature Density of metals and alloys Table 1...
Abstract
This article contains tables that present engineering data for the following metals and their alloys: aluminum, copper, iron, lead, magnesium, nickel, tin, titanium, zinc, precious metals, permanent magnet materials, pure metals, rare earth metals, and actinide metals. Data presented include density, linear thermal expansion, thermal conductivity, electrical conductivity, resistivity, and approximate melting temperature. The tables also present approximate equivalent hardness numbers for austenitic steels, nonaustenitic steels, austenitic stainless steel sheet, wrought aluminum products, wrought copper, and cartridge brass. The article lists conversion factors classified according to the quantity/property of interest.
Image
Approximate equivalent hardness numbers for steel. Points represent data fr...
Available to PurchasePublished: 01 January 2005
Fig. 1 Approximate equivalent hardness numbers for steel. Points represent data from the hardness conversion tables.
More
Image
Approximate equivalent hardness numbers for steel. Points represent data fr...
Available to PurchasePublished: 01 January 2006
Fig. 1 Approximate equivalent hardness numbers for steel. Points represent data from the hardness conversion tables.
More
Image
Approximate equivalent hardness numbers for steel. Points represent data fr...
Available to PurchasePublished: 01 October 2014
Fig. 1 Approximate equivalent hardness numbers for steel. Points represent data from the hardness conversion tables.
More
Image
Approximate equivalent hardness numbers for steel. Points represent data fr...
Available to PurchasePublished: 01 January 2000
Fig. 1 Approximate equivalent hardness numbers for steel. Points represent data from the hardness conversion tables.
More
Book Chapter
Density of Metals and Alloys
Available to PurchaseBook: Corrosion: Materials
Series: ASM Handbook
Volume: 13B
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v13b.a0006543
EISBN: 978-1-62708-183-2
... Abstract Density allows for the conversion of uniform corrosion rates from units of weight (or mass) loss per unit area per time to thickness per unit time. This article contains a table that lists the density of metals, such as aluminum, copper, iron, stainless steel, magnesium, and lead...
Abstract
Density allows for the conversion of uniform corrosion rates from units of weight (or mass) loss per unit area per time to thickness per unit time. This article contains a table that lists the density of metals, such as aluminum, copper, iron, stainless steel, magnesium, and lead, and their alloys.
Book Chapter
Mechanical Testing in Failure Analysis
Available to PurchaseSeries: ASM Handbook
Volume: 11
Publisher: ASM International
Published: 15 January 2021
DOI: 10.31399/asm.hb.v11.a0006761
EISBN: 978-1-62708-295-2
... of conversion tables and charts that are commonly used and used incorrectly. ASTM International E 140 is an oft-used document that was originally developed from empirical data collated from a number of participating laboratories, manufacturers, raw material producers, and other interested parties ( Ref 5...
Abstract
Mechanical testing is an evaluative tool used by the failure analyst to collect data regarding the macro- and micromechanical properties of the materials being examined. This article provides information on a few important considerations regarding mechanical testing that the failure analyst must keep in mind. These considerations include the test location and orientation, the use of raw material certifications, the certifications potentially not representing the hardware, and the determination of valid test results. The article introduces the concepts of various mechanical testing techniques and discusses the advantages and limitations of each technique when used in failure analysis. The focus is on various types of static load testing, hardness testing, and impact testing. The testing types covered include uniaxial tension testing, uniaxial compression testing, bend testing, hardness testing, macroindentation hardness, microindentation hardness, and the impact toughness test.
Book Chapter
Chromium Elimination in Surface Engineering
Available to PurchaseBook: Surface Engineering
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001323
EISBN: 978-1-62708-170-2
... on either unpainted or painted specimens. Examples of the performance of chromate conversion coatings in these tests are included in Table 3 , which also shows the performance of alternatives. Coating characteristics of chromate conversion coating and prospective alternative processes Table 3...
Abstract
This article focuses on alternatives to chromium in both hard chromium plating and chromate conversion coating. These include electroless nickel plating, nickel-tungsten composite electroplating, spray coating applications, and cobalt/molybdenum-base conversion coating. The article discusses the material and process substitutions that can be used to eliminate the use or emissions of chromium in industrial processes. It describes the physical characteristics of each coating, economics, environmental impacts, advantages, and disadvantages of alternative processes.
Book Chapter
Selection and Industrial Applications of Hardness Tests
Available to PurchaseSeries: ASM Handbook
Volume: 8
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.hb.v08.a0003276
EISBN: 978-1-62708-176-4
... range must be approximately 0.71 mm (0.028 in.) thick for an accurate Rockwell C test. Therefore, 63 HRC must be converted to an approximate equivalent hardness on other Rockwell scales. These hardness values taken from a conversion table are 82.8 HRA, 73 HRD, 69.9 HR45N, 80.1 HR30N, and 91.4 HR15N...
Abstract
This article reviews the factors that have a significant effect on the selection and interpretation of results of different hardness tests, namely, Brinell, Rockwell, Vickers, and Knoop tests. The factors concerned include hardness level (and scale limitations), specimen thickness, size and shape of the workpiece, specimen surface flatness and surface condition, and indent location. The article focuses on the selection for specific types of materials, such as steels, cast irons, nonferrous alloys, and plastics, and industrial applications, of hardness tests.
1