Skip Nav Destination
Close Modal
By
Deepak Rammohan, Jose L. Gonzalez-Mendez
Search Results for
conventional piercing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 197
Search Results for conventional piercing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Blanking and Piercing
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005117
EISBN: 978-1-62708-186-3
... Abstract This article begins with a discussion on the fundamentals of cutting. It focuses on blanking and piercing operations in a press tool to form and shape the final part geometry. The types of piercing operations include conventional piercing, piercing with a pointed punch, piece...
Abstract
This article begins with a discussion on the fundamentals of cutting. It focuses on blanking and piercing operations in a press tool to form and shape the final part geometry. The types of piercing operations include conventional piercing, piercing with a pointed punch, piece-and-extrude operations, slotting, countersinking, and cutting and lancing of tabs. The article provides information on the punch assembly, the die assembly, and the stripper and discusses the factors considered during piercing operations. It reviews the applications of the four types of blanks used in sheet-forming operations, namely, rectangular blank, rough blank, partially developed blank, and fully developed blank. It concludes with a discussion on the process capabilities, applications, and limitations of fine-edge blanking and piercing.
Image
Pierced and extruded conventional propeller barrel forging. Machined contou...
Available to PurchasePublished: 01 January 2005
Fig. 19 Pierced and extruded conventional propeller barrel forging. Machined contours of barrel are shown in the sectional view in (a), and the locations of test coupons are shown in the views in (b). See Example 13 . Dimensions in figure given in inches Item Conventional forging
More
Book Chapter
Forging Design Involving Cavities and Holes
Available to PurchaseSeries: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004040
EISBN: 978-1-62708-185-6
... by drilling and reaming rather than by the use of small-diameter punches. Fig. 5 Three forgings that illustrate forged cavities produced by piercing. (a) Conventional, (b) and (c) seamless forging (cored), together with a (d) typical forging sequence for the production of ring gears. Dimensions given...
Abstract
Machining serves as a more specialized supplement to the forging process, particularly in the formation of cavities and holes. This article provides information on the enclosures, cavities, and holes in hammer and press forgings. It provides a checklist that serves as a guide to the procedure for reviewing the design of cavities and holes to be incorporated in forgings. The article also describes forging designs in which cavities and holes are related to rib and web designs, punchout, piercing, extruding, and combinations of these processes.
Image
Side and end views of solid (a), and pierced and reverse extruded (b), conv...
Available to PurchasePublished: 01 January 2005
Fig. 20 Side and end views of solid (a), and pierced and reverse extruded (b), conventional landing gear cylinder forgings. Test-coupon locations for the pierced and extruded forging are shown. See Table 3 for properties. See also Example 14. Dimensions in figure given in inches Item
More
Book Chapter
Blanking of Low-Carbon Steel
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005108
EISBN: 978-1-62708-186-3
... a tolerance of ±0.13 mm (±0.005 in.). Closer tolerances on blanks can be obtained at increased cost by using rotary-head millers or jig boring machines in constructing the dies. Because holes and slots made by steel-rule blanking are pierced with conventional punch and die elements that are added...
Abstract
This article discusses the production of blanks from low-carbon steel sheet and strip in dies in a mechanical or hydraulic press. It describes the cutting operations that are done by dies in presses to produce blanks. The applications of blanking methods are described with examples. The article reviews the characteristics of blanked edges and explains how to calculate the forces and the work involved in blanking. Factors affecting the processing of blanks are discussed. The article provides information on the selection of work metal form, the effect of work metal thickness on the selection of material for dies and related components, as well as the selection of die type and design. The article illustrates the construction and use of short-run dies and conventional dies. It concludes with information on the shaving and deburring methods for blanking.
Image
Conventional aluminum alloy forgings for gimbal ring: ring-rolled (a) and f...
Available to PurchasePublished: 01 January 2005
Fig. 14 Conventional aluminum alloy forgings for gimbal ring: ring-rolled (a) and finished by closed-die forging (b). See Example 8 . Dimensions in figure given in inches Item Conventional closed-die forging (revised) Material and temper Aluminum alloy 2014-T6 (a) Forging
More
Book Chapter
Piercing of Low-Carbon Steel
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005109
EISBN: 978-1-62708-186-3
... economical method for medium-to-high production. Pierced holes can be almost any size and shape; elongated holes are usually called slots. The accuracy of conventional tool steel or carbide dies provides pierced holes with a degree of quality and accuracy that is satisfactory for a wide variety...
Abstract
This article illustrates the characteristics of pierced holes and summarizes the hole wall quality. Specific guidance in selecting die clearances is provided by considering the types of edges produced with different clearances. The article discusses the effect of tool dulling and the use of small and large clearance. It informs that the force needed to pierce a given material depends on the shear strength of the work metal, the peripheral size of the hole or holes to be pierced, stock thickness, and depth of shear on the punch. The article discusses the presses and tools used in piercing. It illustrates the use of compound dies, progressive dies, and transfer dies; piercing of thick and thin stock and piercing holes at an angle to the surface; special piercing techniques; and shaving of low-carbon steels.
Book Chapter
Multiple-Slide Machines and Tooling
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005180
EISBN: 978-1-62708-186-3
... the average comparable die sets used in conventional presses. Piercing, shearing, and forming units are of simple design and are relatively inexpensive to build. Die details are mostly standard parts and can often be made at the plant where the machine is located. Forming units are fastened to the cam...
Abstract
The multiple-slide machine, sometimes called a four-way, four-slide, or multislide machine, is a somewhat specialized item of stamping equipment, although it is very versatile within a limited area of stamping applications. This article discusses the construction and advantages of multiple-slide machines. It presents comparisons of four-slide operations with press operations based on production speed, tooling cost, tool adjustments, and operating cost. The article reviews some factors to be considered while selecting multiple-slide machines. It summarizes the strip materials commonly used in four-slide production. The article examines the design factors of four-slide parts, including tolerances and finishes. It provides the design recommendations for optimal part quality at maximum production speed. The article also discusses various four-slide cutoff methods.
Image
Three forgings that illustrate forged cavities produced by piercing. (a) Co...
Available to PurchasePublished: 01 January 2005
Fig. 5 Three forgings that illustrate forged cavities produced by piercing. (a) Conventional, (b) and (c) seamless forging (cored), together with a (d) typical forging sequence for the production of ring gears. Dimensions given in inches
More
Image
Conventional blanking process. (a) Steel strip is fed into position when to...
Available to PurchasePublished: 01 January 2006
Fig. 2 Conventional blanking process. (a) Steel strip is fed into position when tool is open. (b) Guide plate holds the steel strip and punch drops. (c) Punch continues to pierce into the strip, and the part is blanked. (d) The strip is fed forward, ready for next cycle.
More
Book Chapter
Blanking and Piercing of Electrical Steel Sheet
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005119
EISBN: 978-1-62708-186-3
... Punchability Materials used for electrical sheet can be classified in the following order with respect to decreasing ease of blanking, piercing, and notching: Conventional flat-rolled low-carbon steels such as 1008 Nonoriented silicon steels Oriented silicon steels To a large extent...
Abstract
This article discusses the presses, auxiliary equipment, and dies used in the blanking and piercing of commonly used magnetically soft materials, namely, low-carbon electrical steels and oriented and nonoriented silicon electrical steels. It describes the effect of stock thickness and work metal composition and condition on blanking and piercing. The article provides an overview of the influence of burr height on stacking factors and presents a discussion on the lubrication and core plating of electrical steels that ease the process.
Book Chapter
Mechanical Joining by Forming
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0009154
EISBN: 978-1-62708-186-3
..., and self-pierce riveting. clinched joints clinching crimping fatigue behavior forming mechanical joining riveting self-pierce riveting MECHANICAL JOINING is a process where two or more components are held together through the use of either an integral feature of components or through...
Abstract
Mechanical joining by forming includes all processes where parts being joined are formed locally and sometimes fully. This article focuses on the types, advantages, disadvantages, and applications of the various mechanical joining methods, namely, riveting, crimping, clinching, and self-pierce riveting.
Image
Conventional hollow cam cylinder forging, used in the manufacture of statio...
Available to PurchasePublished: 01 January 2005
Fig. 16 Conventional hollow cam cylinder forging, used in the manufacture of stationary propeller cams. The upper section shows machined contours in phantom, and the lower view indicates grain flow. See Example 10 . Dimensions in figure given in inches Item Conventional forging
More
Book Chapter
Forming of Sheet, Strip, and Plate
Available to PurchaseSeries: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003177
EISBN: 978-1-62708-199-3
.... Ordinarily, piercing is the fastest method of producing holes in steel sheet or strip. Generally, it is the most economical method for medium-to-high production. Pierced holes can be almost any size and shape; elongated holes are usually called slots. The accuracy of conventional tool steel or carbide dies...
Abstract
This article describes the presses that are mechanically or hydraulically powered and used for producing sheet, strip, and plate from sheet metal. It also presents the JIC standards for presses, compares the presses based on power source, details the selection criteria and provides information on the various drive systems and the auxiliary equipment. It describes the selection of die materials and lubricants for sheet metal forming and provides information on the lubrication mechanisms and selection with a list of lubricant types for forming of specific sheet materials of ferrous or nonferrous metals. The article reviews the various types of forming processes such as blanking, piercing, fine-edge blanking, press bending, press forming, forming by multiple-slide machines, deep drawing, stretch forming, spinning, rubber-pad forming, three-roll forming, contour roll forming, drop hammer forming, explosive forming, electromagnetic forming, and superplastic forming.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005162
EISBN: 978-1-62708-186-3
... die, which made a finished part at each press stroke, replaced three dies in which 12 press strokes were required for producing one piece. The separate dies were a standard piercing and notching die, an embossing die, and a conventional V-die. Setup time for each die was 30 min. Fig. 5 Strut...
Abstract
This article reviews the selection and formability characteristics of steels, with an emphasis on low-carbon steels and some coverage on the forming of high-carbon steels. It describes the key factors that affect the formability of steels in terms of steelmaking practices, surface finishes, metal thicknesses, and alloying. The article explains the bending and forming operations with some examples. It also describes the formation of various shells, including doubly contoured shells, deep recessed shells, and deep circular shells.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003980
EISBN: 978-1-62708-185-6
... for the production of gear blanks. Example 1: Combined Upsetting and Piercing of 8622 Steel Gear Blank The gear blank shown in Fig. 10 was produced more satisfactorily by upsetting and piercing than if a conventional hammer or press had been used. Less material was used, and external flash was eliminated...
Abstract
This article discusses the operation of upset forging machines and selection of the machine size. It describes several types of upsetter heading tools and their materials. The article reviews the cold shearing and hot shearing methods for preparing blanks for hot upset forging. It deals with various upsetting processes: offset upsetting, double-end upsetting, upsetting with sliding dies, upsetting pipe and tubing, and electric upsetting. The article also provides information on hot forging and cold forging.
Book Chapter
Selection of Materials for Shearing, Blanking, and Piercing Tools
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005104
EISBN: 978-1-62708-186-3
... in more detail in the article “Shearing of Sheet, Strip, and Plate” in this Volume. General aspects are also described in the article “Principles of Shearing, Blanking, and Piercing” in this Volume. Fig. 1 Conventional arrangement of cutters in a rotary shearing machine, for production...
Abstract
Shearing is a process of cutting flat product with blades, rotary cutters, or with the aid of a blanking or punching die. This article commences with a description of some wear and material factors for tools used to shear flat product, principally sheet. Methods of wear control are reviewed in terms of tool materials, coatings and surface treatments, and lubrication. The article discusses tool steels that are used for cold and hot shearing, and rotary slitting. It provides information on the materials used for two main categories of machine knives: circular knives and straight knife cutters. The article also discusses the selection of materials for blanking and piercing dies and provides examples that illustrate the various types of tooling changes for blanking high-carbon steel.
Book Chapter
Abrasive Waterjet Cutting
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005107
EISBN: 978-1-62708-186-3
... workpiece tooling, because the jet delivers approximately 2 to 9 N (0.5 to 2 lbf) of vertical force Finished part tolerance of 0.075 to 0.25 mm (0.003 to 0.010 in.) with conventional abrasive waterjet cutting of materials under 50 mm (2 in.) thick Limitations This device cannot replace tools...
Abstract
This article provides a detailed account of the process development, cutting principle, and components of the abrasive waterjet cutting process. The advantages of abrasive waterjet machining are summarized. The article also discusses the factors affecting the cut quality, and the applications and limitations of abrasive waterjet cutting.
Book Chapter
Forming of Steel Strip in Multiple-Slide Machines
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005165
EISBN: 978-1-62708-186-3
... in seven conventional press operations was replanned for the multiple-slide production of four pieces per cycle at 200 cycles per minute. Multiple-Slide Machines Multiple-slide machines are made in a range of sizes, all similar in construction and principle. The larger machines have a longer die...
Abstract
Multiple-slide forming is a process in which the workpiece is progressively formed in a combination of units that can be used in various ways for the automated fabrication of a large variety of simple and intricately shaped parts from coil stock or wire. This article discusses the components of multiple-slide rotary forming machines involved in the blanking and forming of strip stock. It describes a complicated application of the two-level forming, with an example.
Series: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005141
EISBN: 978-1-62708-186-3
... used in the forming. It also analyzes the various forming processes of aluminum alloys. The processes include blanking and piercing, bending, press-brake forming, contour roll forming, deep drawing, spinning, stretch forming, rubber-pad forming, warm forming, superplastic forming, explosive forming...
Abstract
This article discusses the general formability considerations of aluminum alloys. To conduct a complete analysis of a formed part, the required mechanical properties, as determined by several standard tests, must be considered. The article describes tension testing and other tests designed to simulate various production forming processes, including cup tests and bend tests, which help in determining these properties. It provides information on the equipment and tools, which are used in the forming of aluminum alloys. The article presents a list of lubricants that are most widely used in the forming. It also analyzes the various forming processes of aluminum alloys. The processes include blanking and piercing, bending, press-brake forming, contour roll forming, deep drawing, spinning, stretch forming, rubber-pad forming, warm forming, superplastic forming, explosive forming, electrohydraulic forming, electromagnetic forming, hydraulic forming, shot peening, and drop hammer forming.
1