Skip Nav Destination
Close Modal
By
Edward J. Vinarcik
By
Geoffrey Sigworth
By
J. Gilbert Kaufman
Search Results for
conventional die casting
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 640
Search Results for conventional die casting
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005276
EISBN: 978-1-62708-187-0
... Abstract Vacuum high-pressure die casting uses a vacuum pump to evacuate the air and gases from the die casting die cavity and metal delivery system before and during the injection of molten metal. This article describes the conventional die casting, vacuum die casting, and high-pressure die...
Abstract
Vacuum high-pressure die casting uses a vacuum pump to evacuate the air and gases from the die casting die cavity and metal delivery system before and during the injection of molten metal. This article describes the conventional die casting, vacuum die casting, and high-pressure die casting processes.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005318
EISBN: 978-1-62708-187-0
... and the need and economics of postprocessing. This article examines how design and materials selection address these diverse requirements of conventional die casting tooling. It focuses on the tooling for high-volume processes where the liquid or semisolid metal is forced into the die with high pressure...
Abstract
The designer of die casting tooling must balance the functional requirements of the part being cast with the cost, speed, and quality requirements of the process. In addition, attention must also be paid to the capacity and operating parameters of the casting machines being used and the need and economics of postprocessing. This article examines how design and materials selection address these diverse requirements of conventional die casting tooling. It focuses on the tooling for high-volume processes where the liquid or semisolid metal is forced into the die with high pressure and speed. The article also describes the functions of the tooling which involves supplying of molten alloy to the casting machine and injecting it into the die.
Image
Relative rankings of eight process characteristics for common methods of ca...
Available to PurchasePublished: 30 November 2018
method as best (longest bar on top) to lowest (shortest bar on bottom) for each process characteristic. Note: Internal soundness is markedly improved by vacuum die casting beyond that of conventional die casting. Vacuum and conventional die casting have similar ratings for the other process
More
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005269
EISBN: 978-1-62708-187-0
... casting) and forging. Squeeze casting builds on conventional (high-pressure, high-velocity) die-casting practices and, in recent years, has been widely used to manufacture automotive components (essentially aluminum) requiring high impact strength, high fatigue strength, and pressure tightness or wear...
Abstract
This article discusses the types of squeeze-casting machines and the advantages of squeeze casting. It examines the considerations required for the casting and tooling design process of squeeze-casting. The article describes the various factors that affect the squeeze-cast products and outlines a few of the key process characteristics. It provides information on the applications of squeeze-cast and contains a table that compares the tensile, hardness, and impact properties of select squeeze-cast aluminum alloys with those obtained from conventional casting processes.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006498
EISBN: 978-1-62708-207-5
... solid (rolling, forging, extrusion, etc.), semisolid processing is different, because components are produced while the metal is semisolid (i.e., partially liquid and partially solid). Semisolid casting is a process similar to conventional die casting, and it maintains many of the advantages...
Abstract
Semisolid casting is a near-net shape manufacturing process capable of producing thick- and thin-walled complex-shaped components having excellent mechanical and functional performance. This article begins with a discussion on the history of semisolid processing and the advantages claimed for semisolid casting. It describes the four notable processes used to produce semisolid castings: thixocasting, rheocasting, thixomolding, and wrought processes. Most commercial aluminum semisolid casters use either thixocasting or rheocasting. The article discusses the die design, process conditions, and simulation for semisolid casting. It concludes with a review of several components produced by each of the various semisolid casting processes.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005266
EISBN: 978-1-62708-187-0
... alloys can also be die cast. Parts produced by the die casting process are shown in Fig. 1 . The primary categories of the conventional die casting process are the hot chamber process and the cold chamber process. These main process variations have been enhanced in recent years to produce high-integrity...
Abstract
This article provides a comprehensive discussion on die casting alloy types and casting processes used in high-pressure die casting. It presents the advantages and disadvantages of high-pressure die casting and describes the product design for the process. The article concludes with information on the metal injection process of high-pressure die casting.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005273
EISBN: 978-1-62708-187-0
... in thixocasting. The article illustrates the differences between a conventional high-pressure die-casting injection profile and the thixocasting injection profile used to produce the same part. thixocasting billet sawing rheological tests high-pressure die-casting injection SEMISOLID METAL CASTING...
Abstract
This article provides an overview of the thixocasting process and discusses the concepts that are important to the practical application of this technology. The thixocasting process involves two casting processes. The first casting process is required to make the feedstock that must be reheated to achieve the structures necessary for casting. The second casting process combines billet sawing, reheating, and the actual injecting of material into the mold. The article focuses on these processes and provides information on rheological tests. It discusses some key design concepts used in thixocasting. The article illustrates the differences between a conventional high-pressure die-casting injection profile and the thixocasting injection profile used to produce the same part.
Book Chapter
Metallography and Microstructures of Semisolid Formed Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 9
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.hb.v09.a0003790
EISBN: 978-1-62708-177-1
... investment results in a total lower cost through reduced scrap rates and less wear on dies. The integrity of components manufactured with semisolid technology, however, is much improved in comparison to conventional die-casting components. Semisolid metalworking extends the capabilities of conventional die...
Abstract
This article begins with a description of indirect and direct semisolid metalworking processes. It then provides information on alloy compositions of common aluminum semisolid metalworking alloys and primary die-cast magnesium alloys in a tabular form. The article describes the macroscopic examination of defects, which occur in semisolid metalworking with illustrations. It discusses the macroscopic examination of gating systems and semisolid feedstocks. The article also provides information on feedstock microstructures, direct semisolid metalworking component microstructures, and indirect semisolid metalworking component microstructures of series 300 aluminum casting alloys and magnesium die-casting alloys.
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006525
EISBN: 978-1-62708-207-5
... casting with much thinner walls. The thin walls freeze extremely quickly when the metal comes in contact with the dies, forming a so-called skin. This skin is responsible for the very good fatigue properties of die castings. The problem with conventional die casting is that the metal is injected...
Abstract
Nearly two-thirds of the aluminum castings made in North America are produced using high-pressure die casting techniques. This article compares and contrasts traditional high-pressure die casting with an improved version that uses a vacuum to pull air out of the die in order to reduce porosity in as-cast parts. It begins by describing a typical cycle for a traditional cold-chamber die casting machine, using detailed illustrations to show how gas can become trapped in the liquid metal. It then presents various remedies, ultimately focusing on vacuum die casting for the production of high-integrity parts. In addition to vacuum technology, the article discusses casting alloys, dies, and cells, and describes some of the benefits of structural die castings.
Book Chapter
Aluminum Casting Alloys and Casting Processes
Available to PurchaseSeries: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006524
EISBN: 978-1-62708-207-5
... presents the advantages and disadvantages of green sand casting, permanent mold casting, semipermanent mold casting, and high-pressure die casting. A discussion on other casting processes, such as investment casting, lost foam, plaster mold casting, pressure casting, centrifugal casting, and semisolid...
Abstract
Aluminum casting alloys are among the most versatile of all common foundry alloys and generally have high castability ratings. This article provides an overview of the common methods of aluminum shape casting. It discusses the designations of aluminum casting alloys categorized by the Aluminum Association designation system. The article summarizes the basic composition groupings of aluminum casting alloy and discusses the effects of specific alloying elements and impurities. The characteristics of the important casting processes are summarized and compared in a table. The article presents the advantages and disadvantages of green sand casting, permanent mold casting, semipermanent mold casting, and high-pressure die casting. A discussion on other casting processes, such as investment casting, lost foam, plaster mold casting, pressure casting, centrifugal casting, and semisolid casting, is also included.
Book Chapter
360.0 and A360.0 Al-Si-Mg General-Purpose Die-Casting Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006571
EISBN: 978-1-62708-210-5
... in conventional die castings. Finishing : Electroplated finishes are excellent on alloys 360.0 and A360.0. Chemical conversion coatings give good protection, and anodized appearance and mechanical finishes are rated good. The anodized color is gray. The value of chemical conversion coatings for corrosion...
Abstract
This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and application characteristics of Al-Si-Mg general-purpose die-casting alloys 360.0 and A360.0.
Book Chapter
380.0, A380.0, and B380.0 General-Purpose Die-Casting Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006575
EISBN: 978-1-62708-210-5
.... Conventional die cast parts are not usually heat treated, but may be annealed or stress relieved: Stress relieving : Heat at 175–260 °C (350–500 °F) for 4–6 h. Cool to room temperature in still air. Annealing : To increase ductility, heat at 260–370 °C (500–700 °F) for 4–6 h. Cool to room...
Abstract
The aluminum alloys 380.0, A380.0, and B380.0 are widely used for making general-purpose die castings. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, fabrication characteristics, and application characteristics of these 3xxx series alloys.
Book Chapter
Heat Treating of Low-Melting-Point Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006275
EISBN: 978-1-62708-169-6
... on the mechanical properties of zinc alloy and zinc-aluminum alloy castings. Effect of temperature on the mechanical properties of conventional die casting zinc alloys Table 1 Effect of temperature on the mechanical properties of conventional die casting zinc alloys Alloy designation Temperature...
Abstract
This article discusses the various heat treating processes, namely, solid-solution hardening, solution treating, solution aging and dispersion hardening, for low-melting-point alloys such as lead alloys, tin-rich alloys, and zinc alloys. Heat treating of tin-rich alloys has been practiced for bearing alloys, pewterware, and organ pipe alloys. The article reviews the principles underlying these applications.
Book Chapter
390.0, A390.0, and B390.0 Al-Si-Cu-Mg Hypereutectic Casting Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006577
EISBN: 978-1-62708-210-5
... 14.5 390.0, conventional die castings F 280 40.5 240 35 120 140 20 T5 295 43 260 38 125 … … 390.0, Acurad castings F 205 30 195 28 110 90 13 T5 205 30 200 29 110 95 14 T6 365 53 365 53 150 115 17 T7 275 40 275 40 125 110 16...
Abstract
This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and application characteristics of Al-Si-Cu-Mg hypereutectic casting alloys 390.0, A390.0, and B390.0. Tool lives for the machining of alloys 380 and 390 are illustrated.
Series: ASM Desk Editions
Publisher: ASM International
Published: 01 December 1998
DOI: 10.31399/asm.hb.mhde2.a0003172
EISBN: 978-1-62708-199-3
... that use ceramic molds include investment casting, and plaster casting. Metallic molds are used in permanent mold casting, die casting, semisolid casting, and centrifugal casting. centrifugal casting ceramic molds CO2 process cold box process die casting hot box process investment casting lost...
Abstract
This article discusses classification of foundry processes based on the molding medium, such as sand molds, ceramic molds, and metallic molds. Sand molds can be briefly classified into two types: bonded sand molds, and unbonded sand molds. Bonded sand molds include green sand molds, dry sand molds, resin-bonded sand molds, and sodium silicate bonded sand. The article describes the casting processes that use these molds, including the no-bake process, cold box process, hot box process, the CO2 process, lost foam casting process and vacuum molding process. The casting processes that use ceramic molds include investment casting, and plaster casting. Metallic molds are used in permanent mold casting, die casting, semisolid casting, and centrifugal casting.
Book
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.9781627081870
EISBN: 978-1-62708-187-0
Book Chapter
Properties and Selection of Cast Aluminum Alloys
Available to PurchaseSeries: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006548
EISBN: 978-1-62708-210-5
... Abstract This article aims to comprehensively review and summarize the material properties and engineering data for aluminum alloy castings and their many applications. The discussion focuses on conventional sand, permanent mold, and die castings as well as the premium engineered versions...
Abstract
This article aims to comprehensively review and summarize the material properties and engineering data for aluminum alloy castings and their many applications. The discussion focuses on conventional sand, permanent mold, and die castings as well as the premium engineered versions of some alloys. The article provides a summary of aluminum casting alloy designations of The Aluminum Association, the Unified Numbering System, and specific alloys considered premium strength by definition and by ASTM International and Aerospace Material Specifications. A distillation of data from published industry sources is given for a wide range of the properties and performance characteristics for topics such as: physical and thermophysical properties, typical and minimum mechanical properties, fatigue resistance, fracture resistance, and subcritical crack growth.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005333
EISBN: 978-1-62708-187-0
.... As with the lower-aluminum conventional zinc die casting alloys, they contain zinc plus aluminum, with small amounts of copper and magnesium. The numerical components of the ZA alloys indicate the approximate aluminum content. Compositions and properties of these alloys are also shown in Tables 1 and 2...
Abstract
Die casting is the process most often used for shaping zinc alloys. This article tabulates the compositions of zinc casting alloys and comparison of typical mechanical properties of zinc casting alloys. It discusses additions of alloys to the zinc, including aluminum, magnesium, copper, and iron. The article illustrates a characteristic five-layer microstructure of zinc alloy casings. It discusses the various methods of finishing of zinc alloy die castings, including chromium plating, polishing, painting, and electropainting. The article describes the casting of inserts and their uses in the zinc. It concludes with information on the applications of zinc die castings.
Book Chapter
Selection of Materials for Press-Forming Dies
Available to PurchaseSeries: ASM Handbook
Volume: 14B
Publisher: ASM International
Published: 01 January 2006
DOI: 10.31399/asm.hb.v14b.a0005140
EISBN: 978-1-62708-186-3
... Abstract This article reviews the production variables that influence the selection of various stamping die materials: ferrous, nonferrous, and plastic die materials. It provides a discussion on the specific types of die materials for tool steels, cast irons, plastics, aluminum, bronze, zinc...
Abstract
This article reviews the production variables that influence the selection of various stamping die materials: ferrous, nonferrous, and plastic die materials. It provides a discussion on the specific types of die materials for tool steels, cast irons, plastics, aluminum, bronze, zinc-aluminum, and steel-bonded carbides. The article describes factors to be considered during the selection of materials for press-forming dies.
Book: Casting
Series: ASM Handbook
Volume: 15
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.hb.v15.a0005267
EISBN: 978-1-62708-187-0
... half of the die casting die in a conventional machine. This spherical joint is tightly clamped to prevent leakage of casting alloy. Materials of construction for the gooseneck nozzle seat are chosen to resist high wear and have been made from nitrided alloy steel, hot worked tool steels such as H13...
Abstract
This article describes the melting process of casting metals used in hot chamber die casting. It discusses the design and capabilities of injection components, such as gooseneck, plunger, and cylinder. The article reviews the distinctions between hot and cold chamber processes. An example of a typical runner, gate and overflow configuration for faucet fixture casting is shown. Temperature control for die casting is also discussed. The article explains some ejection and post-processing techniques used for the hot chamber die casting: robotics, recycling, and fluxing.
1