1-20 of 1219

Search Results for controlled-toughness alloy

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006747
EISBN: 978-1-62708-210-5
... Abstract Alloy 7475 is a controlled-toughness alloy for sheet and plate product forms. This datasheet provides information on key alloy metallurgy, processing effects on physical and mechanical properties, and fabrication characteristics of this 7xxx series alloy. aluminum alloy 7475...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006613
EISBN: 978-1-62708-210-5
... product, resulting in a 2324-T39 temper ( Tables 2 and 3 ). Toughness was maintained at the higher strength level by reducing Fe and Si to levels even lower than for alloy 2124. The strength of the extruded product was improved by controlling the extrusion parameters to maintain an unrecrystallized...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002379
EISBN: 978-1-62708-193-1
... control strength, intermetallic compounds that form during solidification primarily control ductility and fracture toughness. A list of precipitates and intermetallic compounds in aluminum alloys Table 3 A list of precipitates and intermetallic compounds in aluminum alloys Precipitate phases...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002406
EISBN: 978-1-62708-193-1
... tear test curves Alloys for which fracture toughness is a meaningful design-related parameter fall into two categories: Controlled-toughness, high-strength alloys (i.e., those alloys developed primarily for their high fracture toughness at high strength) Conventional high-strength...
Series: ASM Handbook
Volume: 4D
Publisher: ASM International
Published: 01 October 2014
DOI: 10.31399/asm.hb.v04d.a0005994
EISBN: 978-1-62708-168-9
... to increase fatigue strength, lower C for better yield ration. Tensile strength: 882 kg/mm 2 Rod steel → hot forging and direct cooling → machining Wheel hubs, connecting rods, etc. High-strength and toughness (alloy steel) Low C martensite for high strength and toughness Rod steel → hot forging...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001025
EISBN: 978-1-62708-161-0
...%. Fig. 1 General comparison of Charpy V-notch toughness for a mild-carbon steel (ASTM A 7, now ASTM A 283, grade D), an HSLA steel, and a heat-treated constructional alloy steel These four types of high-strength steels have some basic differences in mechanical properties and available product...
Series: ASM Handbook
Volume: 1A
Publisher: ASM International
Published: 31 August 2017
DOI: 10.31399/asm.hb.v01a.a0006339
EISBN: 978-1-62708-179-5
.... For economic reasons, or to avoid metallurgical problems, combinations of alloys are often used to achieve the desired hardenability in austempered ductile iron. The article provides information on the alloy combinations for austempered ductile iron. The mechanical properties, fracture toughness, fatigue...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006457
EISBN: 978-1-62708-210-5
... understanding of the interrelationships of alloy microstructure and fracture mechanisms has led to the design of new commercial aluminum alloys offering optimum high strength and high toughness ( Ref 20 – 27 ). Primarily, the alloy improvements have evolved through microstructural control obtained by increased...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002351
EISBN: 978-1-62708-193-1
... the toughness while at the same time maintaining acceptable strength levels. Reducing the grain size of most alloys results in both an increase in toughness and an increase in strength. Thus, grain size control has been a popular mechanism for obtaining desirable combinations of mechanical properties...
Series: ASM Handbook
Volume: 2B
Publisher: ASM International
Published: 15 June 2019
DOI: 10.31399/asm.hb.v02b.a0006726
EISBN: 978-1-62708-210-5
... fasteners. The best known of these alloys are alloys 7075, 7475, and 7050. Some of the newer alloys were developed to optimize fracture toughness and resistance to corrosion, primarily stress corrosion cracking and exfoliation corrosion. This was accomplished through a combination of composition control...
Series: ASM Handbook
Volume: 6
Publisher: ASM International
Published: 01 January 1993
DOI: 10.31399/asm.hb.v06.a0001404
EISBN: 978-1-62708-173-3
... with a combination of controlled rolling followed by accelerated cooling or in-line direct quenching. This processing allows the steelmaker to develop a combination of high strength and high toughness while maintaining good weldability. The weldability is good because the alloy content of these steels can be kept...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001040
EISBN: 978-1-62708-161-0
... potent alloying elements in its effect on notch toughness and strength. Consequently, for maximum toughness, the carbon content should be kept as low as possible, consistent with strength requirements. Low-carbon steels tend to have very steep transition curves. Fig. 9 Variation in Charpy V-notch...
Image
Published: 01 January 1990
Fig. 18 Effect of interstitial elements on notch toughness. The notch toughness at −18 °C (0 °F) of 12% Ni maraging steel can be significantly raised by controlling the amount of interstitial alloying elements in the steel, regardless of the strength level. Numbers indicate plate thickness More
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002397
EISBN: 978-1-62708-193-1
... strengthening, grain refinement, and possibly transformation temperature control As-rolled pearlitic steels, which may include carbon-manganese steels but which may also have small additions of other alloying elements to enhance strength, toughness, formability, and weldability Acicular ferrite (low...
Series: ASM Handbook
Volume: 5
Publisher: ASM International
Published: 01 January 1994
DOI: 10.31399/asm.hb.v05.a0001241
EISBN: 978-1-62708-170-2
... and abrasive chip after it is released from the work material. Toughness Toughness is the resistance to fracture. It is easier to propagate cracks or fracture through material of lower toughness. Hence, it is easier to machine high-hardness, low-toughness alloy steels than high-toughness stainless steel...
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001008
EISBN: 978-1-62708-161-0
... solubility of carbon in austenite and ferrite, as controlled by alloying and processing, account for the great variety of microstructures and properties produced in steels. Fig. 1 Iron-carbon equilibrium diagram up to 6.67 wt% C. Solid lines indicate Fe-Fe 3 C diagram; dashed lines indicate iron...
Series: ASM Handbook
Volume: 4C
Publisher: ASM International
Published: 09 June 2014
DOI: 10.31399/asm.hb.v04c.a0005884
EISBN: 978-1-62708-167-2
... and fatigue properties. While forged steel generally has superior fatigue and toughness properties, it must be noted that forging has only minor effects on the final hardness and strength of the component. Hardness and strength are normally controlled via composition selection and heat treatment. Hot...
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003995
EISBN: 978-1-62708-185-6
... and reviews how improvements in the strength and toughness depend on the synergistic effect of microalloy additions and on carefully controlled thermomechanical conditions. It discusses TMP variables and the general distinctions between conventional hot rolling and common types of controlled-rolling schedules...
Series: ASM Handbook
Volume: 4E
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.hb.v04e.a0006278
EISBN: 978-1-62708-169-6
... upon freezing, then the copper is called tough pitch with an oxygen content of approximately 0.05% that is nearly all present in the solidified copper as Cu 2 O. Fig. 3 Microstructures typical of as-cast copper-oxygen alloys. The light areas are the copper dendrite cells, outlined by the dark Cu...
Series: ASM Handbook
Volume: 19
Publisher: ASM International
Published: 01 January 1996
DOI: 10.31399/asm.hb.v19.a0002380
EISBN: 978-1-62708-193-1
... expensive and may give more stability, but allows only crosshead control. Because this is required in most of the fracture toughness tests, this type of machine is quite satisfactory for the actual fracture toughness testing but is not so good for precracking. Loading fixtures must be designed...