Skip Nav Destination
Close Modal
Search Results for
contoured webs
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 149 Search Results for
contoured webs
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004039
EISBN: 978-1-62708-185-6
... webs, contoured webs, and oblique webs. It provides a checklist to be reviewed by a web designer. contoured webs flat webs forging forging design oblique webs web thickness THE WEB of a forging is the relatively thin, platelike element of the forging that lies between, and serves...
Abstract
The distinction between an unconfined web and a confined web describes the relative ease of flow of metal to flash during forging. This article describes the various types of unconfined and confined web-and-rib combinations encountered in the design of forgings. It informs that the limits suggested by forging producers and users covering minimum web thicknesses that are producible are helpful in estimating the producibility of a given web thickness in projected-forging design. The article briefly analyzes the web designs of several forgings, including designs for producing flat webs, contoured webs, and oblique webs. It provides a checklist to be reviewed by a web designer.
Image
Published: 01 January 2005
Fig. 8 Conventional steel forging that illustrates a confined, contoured web. Dimensions given in inches
More
Image
Published: 01 January 2005
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004040
EISBN: 978-1-62708-185-6
...: Modified Precision Forging That Provided for Lightening Holes, Eliminated Contour Machining, and Contributed to Cost Reduction In the manufacture of aluminum alloy partial frames weighing about 0.23 kg (0.5 lb), a modified precision forging featured draft ranging from 0° to 3°, a thin reinforced web...
Abstract
Machining serves as a more specialized supplement to the forging process, particularly in the formation of cavities and holes. This article provides information on the enclosures, cavities, and holes in hammer and press forgings. It provides a checklist that serves as a guide to the procedure for reviewing the design of cavities and holes to be incorporated in forgings. The article also describes forging designs in which cavities and holes are related to rib and web designs, punchout, piercing, extruding, and combinations of these processes.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004038
EISBN: 978-1-62708-185-6
.... It was a rib-and-web frame, containing tapered ribs, contoured ribs, and ribs with narrow spacing. It also demonstrated the economical application of a “siamese” design—that is, a forging that may be cut in half to provide two complementary parts. Fig. 23 Close-tolerance, no-draft bellcrank bracket...
Abstract
Ribs and bosses are the integral functional elements or features of a forging that project outward from a web in a direction parallel to the ram stroke. This article describes the design, functions, and producibility of ribs and bosses. It relates their design to grain flow, metallurgical structure, measurement details, and design parameters, with supplementary data obtained from the examples of actual forgings.
Image
Published: 01 January 2005
in.) (c) Typical fillet radius 3 mm (0.12 in.) Typical corner radius 2.3 mm (0.09) Typical web thickness Optional Length and width tolerance +0.76, −0.38 mm (+0.030, −0.015 in.) Thickness tolerance +0.76, −0.38 mm (+0.030, −0.015 in.) Contour tolerance and waviness (d) Match
More
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004033
EISBN: 978-1-62708-185-6
... Abstract Corners and fillets are curved connecting surfaces on closed-die forgings that unite smoothly the converging or intersecting sides of forged elements, such as ribs, bosses, and webs. This article discusses the effects of several variables, including rib height, type of forging process...
Abstract
Corners and fillets are curved connecting surfaces on closed-die forgings that unite smoothly the converging or intersecting sides of forged elements, such as ribs, bosses, and webs. This article discusses the effects of several variables, including rib height, type of forging process, composition of the forging alloy, and factors associated with die filling and producibility, on vertical and horizontal corners and fillets. It reviews the design of corners and fillets to satisfy the requirements of metal flow in forging and cost considerations arising from usage and removal of metal by machining. The article presents a graphical summary of the interdependence of corner and fillet dimensions with the dimensions of adjoining ribs and webs. It concludes with information on designer's checklist for corners and fillets.
Image
Published: 01 January 2005
Fig. 13 Compressor disk forgings of original and revised designs, showing machined contours in phantom. See Example 1. Dimensions in figure given in inches Item Revised design Material AMS 5613 (type 410 stainless steel) (a) Forging equipment 35 kN (8000 lbf) hammer (b) 50
More
Series: ASM Handbook
Volume: 2A
Publisher: ASM International
Published: 30 November 2018
DOI: 10.31399/asm.hb.v02a.a0006493
EISBN: 978-1-62708-207-5
... 1.5 ± 0.75 mm (0.060 ± 0.030 in.) Fillet radii 3.3 ± 0.75 mm (0.130 ± 0.030 in.) Contour ±0.38 mm (±0.015 in.) Straightness 0.4 mm in 254 mm (0.016 in. in 10 in.) Minimum web thickness (a) 2.3 mm (0.090 in.) Minimum rib thickness 2.3 mm (0.090 in.) Length/width tolerance +0.5...
Abstract
This article examines aluminum forging processes, including open-die, closed-die, upset, roll, orbital, spin, and mandrel forging, and compares and contrasts their capabilities and the associated design requirements for forged parts. It discusses the effect of key process variables such as workpiece and die temperature, strain rate, and deformation mode. The article describes the relative forgeability of the ten most widely used aluminum alloys, and reviews common forging equipment, including hammers, mechanical and screw presses, and hydraulic presses. It also discusses postforge operations such as trimming, forming, repairing, cleaning, and heat treatment.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004037
EISBN: 978-1-62708-185-6
... a central plane common to the forging and the web. Thus, the design of the landing gear support beam ( Fig. 9b ) places a parting line in the ideal, or least objectionable, location because the plane of the parting line is parallel to the longitudinal grain flow of the billet before and during forging...
Abstract
Control of grain flow is one of the major advantages of shaping metal parts by rolling, forging, or extrusion. This article shows the effects of anisotropy on mechanical properties. Cylindrical forgings commonly have a straight parting line located in a diametral plane. The alternate classes of parting lines are called either "straight" or "broken" for brevity. Regardless of whether draft is applied or natural, the forging will have its maximum spread or girth at the parting line. Proper placement of the parting line ensures that the principal grain flow direction within the forging will be parallel to the principal direction of service loading. The article reviews the mutual dependence of parting line and forging process. It provides a checklist for the forging designer that suggests a systematic approach for establishing parting line location. Finally, the article contains examples, with illustrations of parting line locations, accompanied by tables of design parameters.
Image
Published: 01 January 2005
Fig. 29 Two designs of an ordnance missile tank bulkhead forging, (a) and (b), showing parting line locations and their effect on grain flow. Contours of the bulkhead after machining are shown in phantom. See Example 7. Dimensions in figure given in inches Item Revised forging
More
Image
Published: 01 January 2005
Fig. 16 Conventional hollow cam cylinder forging, used in the manufacture of stationary propeller cams. The upper section shows machined contours in phantom, and the lower view indicates grain flow. See Example 10 . Dimensions in figure given in inches Item Conventional forging
More
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003982
EISBN: 978-1-62708-185-6
.... Fig. 1 Ring rolling process. (a) Automotive ring gear during rolling. (b) View of a contour ring during rolling from the control room Ring height is governed either by being contained by the top and bottom of the main roll or by the use of axial rolls that simultaneously act on the top...
Abstract
Ring rolling is a process for creating seamless ring shaped components using specialized equipment and forming processes. This article provides information on the applications of ring rolling. It discusses the types of machines used for ring rolling, namely, vertical rolling machines, radial-axial horizontal rolling machines, four-mandrel mechanical table mills, three-mandrel table mills, and automatic radial-axial multiple-mandrel ring mills. The article provides a discussion on the process control technology and ancillary operations of ring rolling. It describes the methods of producing ring blanks and the various types of blanking and rolling tools used in ring rolling process. The article concludes with a discussion on rolled ring tolerances and machining allowances.
Book Chapter
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004034
EISBN: 978-1-62708-185-6
.... The same terms apply to the corresponding contours of the forging die impressions. Fig. 1 Types of draft, as illustrated on the surfaces of a closed-die forging Outside Draft Outside draft is draft applied to the outer side (or sides) of vertical elements of a forging; thus, it pertains...
Abstract
This article schematically illustrates the basic types of drafts used in forging design, including outside draft, inside draft, blend draft, natural draft, shift draft, and back draft. The amount of draft, or the draft angle, is designated in degrees and is measured from the axis of a hammer or press stroke. The article illustrates the measurement of draft angle by describing the designs of forgings produced in equipment with vertical and horizontal rams. The use of excessive amounts of draft usually results in an increase in overall cost. The article describes various alternatives for reducing or eliminating draft. It provides a checklist citing major items that should be coordinated with a designer's review of draft.
Book: Machining
Series: ASM Handbook
Volume: 16
Publisher: ASM International
Published: 01 January 1989
DOI: 10.31399/asm.hb.v16.a0002158
EISBN: 978-1-62708-188-7
... of waterjet systems as a means for the contour-cutting of web material. A continuously moving web is fed into the system at high speeds. The waterjet nozzle moves laterally in and out of the web area, cutting the desired shape in the web. The waterjet nozzle is normally controlled with a cam linkage, which...
Abstract
This article discusses the functions of the major components of a waterjet machining system. These include hydraulic unit, intensifier, accumulator, filters, water transmission lines, on/off valve, waterjet nozzles, abrasive waterjet nozzle, waterjet catchers, and fluid additives. The article reviews several variables that influence the WJM process, such as pressure, flow and nozzle diameter, stand-off distance, traverse rate, and type and size of abrasive. Advantages and disadvantages of waterjet and abrasive waterjet cutting are also discussed. The article describes the applications of waterjet and abrasive waterjet machining.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0004010
EISBN: 978-1-62708-185-6
... and acceptable mechanical properties. Component shapes similar to turbine engine cases have also been produced. A series of Ti-6Al-4V ring-type shapes with complex internal and external contours is shown in Fig. 9 . These types of components are typically used in stationary applications for aircraft engines...
Abstract
This article describes the roll forming of components of nickel, titanium, and aluminum alloys. The metallurgical characteristics of the roll formed components, such as macrostructures, microstructures, tensile strength, and stress rupture performance, are discussed. The article compares the resulting properties of roll formed and conventionally forged components.
Series: ASM Handbook
Volume: 20
Publisher: ASM International
Published: 01 January 1997
DOI: 10.31399/asm.hb.v20.a0002457
EISBN: 978-1-62708-194-8
... that the strength class be increased to No. 12 for improved material properties. Weight and cost savings. Improved geometric accuracy and consistency. Flexibility of design. Good surface finish for contoured air-passage areas, such as engine air-intakes. Components can be cast with ultrasmooth surfaces...
Abstract
Value analysis (VA) is a team problem-solving process to improve the value of a product from the viewpoint of a user. This article presents a comparison between VA and total quality management in materials selection and design. It discusses the key attributes, concepts, and activities of the VA. The application of value engineering in U.S. government contracts and the construction industry is reviewed. The article describes the eight phases of the VA process: preparation, information, analysis, creation, synthesis, development, presentation and report, and implementation and follow-up. It presents case studies that illustrate the materials-related aspects of the VA process.
Series: ASM Handbook
Volume: 14A
Publisher: ASM International
Published: 01 January 2005
DOI: 10.31399/asm.hb.v14a.a0003991
EISBN: 978-1-62708-185-6
... is increased, albeit at the expense of higher die costs. Excess metal is allowed to escape in the flash; thus, pressure is kept within safe limits while die filling is ensured. More complex shapes, thinner walls, and thinner webs may necessitate forging in a sequence of die cavities, as for connecting rods...
Abstract
This article focuses on the forging behavior and practices of carbon and alloy steels. It presents general guidelines for forging in terms of practices, steel selection, forgeability and mechanical properties, heat treatments of steel forgings, die design features, and machining. The article discusses the effect of forging on final component properties and presents special considerations for the design of hot upset forgings.
Series: ASM Handbook
Volume: 1
Publisher: ASM International
Published: 01 January 1990
DOI: 10.31399/asm.hb.v01.a0001021
EISBN: 978-1-62708-161-0
... be minimized in design by specifying smooth, contoured fillets at changes of configuration. Where stress concentration cannot be avoided, notch toughness is usually important in material selection. Cyclic loads. These can be either high- or low-cycle loads. Sustained loads. If these loads are tensile...
Abstract
Forgings are classified in various ways, beginning with the general classifications open die and closed die. They are also classified according to how they are made; such as hammer upset forgings, ring-rolled forgings, and multiple-ram press forgings; and in terms of the close-to-finish factor or amount of stock that must be removed to satisfy the dimensional and detail requirements of the finished part. In addition to types and classifications, the article discusses critical design factors and ways to ensure that the resulting forgings measure up to metallurgical, mechanical property, and dimensional accuracy requirements. The responsibility for design verification is vested in material control, which depends on the proper application of drawings, specifications, manufacturing process controls, and quality assurance programs. The article addresses each of these areas as well as related topics; including stress-induced fatigue failure, tolerances, machining allowances; and the fundamentals of hammer and press forgings, hot upset forgings, and hot extrusion forgings.
Book: Composites
Series: ASM Handbook
Volume: 21
Publisher: ASM International
Published: 01 January 2001
DOI: 10.31399/asm.hb.v21.a0003387
EISBN: 978-1-62708-195-5
... is, however, a practical concern in the test lab because it can preclude the desired failure modes for some types of coupon test (tensile tests of ±45° laminates, for example). Curved Laminates Laminated composite structures often include corner details that can be treated as curved laminates. Web...
Abstract
This article discusses the methods of analyzing the directional dependence of the mechanical properties of composites, especially those perpendicular to the major plane of the laminate. It provides a description of the common indirect load cases and direct out-of-plane load cases. The article concludes with a discussion on composite materials that are reinforced in the z-direction (also known as three-dimensional, or 3-D composites).
1